Skip to main content

How geoengineering scenarios frame assumptions and create expectations

Abstract

Geoengineering could remake environments and societies, and early governance can help to steer the development of technologies towards sustainable outcomes. In the absence of observational data, geoengineering research and discussions are increasingly informed by scenarios, which provide heuristic tools for ‘envisioning’ potential futures. Although designed for specific research goals, scenarios can have broader implications by influencing expectations about the societal role that emerging geoengineering technologies can play. Yet the design of geoengineering scenarios has gone largely unscrutinized. This study is a meta-analysis in which we evaluate geoengineering scenarios from the literature to identify emerging expectations and assess these in the context of sustainability science. We find that geoengineering scenarios can be classified into three types based on purpose and use: for scientific knowledge-building; as ‘structured conversation’ starters; or as exploratory research tools. The first category dominates the literature; these scenarios stem from physical science disciplines where scientific tradition dictates simplification and standardization, both of which may provide misleading images of the future and therefore hinder robust decision-making. In contrast, scenarios used as exploratory tools depict not one single image of why and how geoengineering might evolve, but many. Analysis of these exploratory scenarios reveal expectations that a geoengineered future may hinge on at least four key elements—the potential for a universal geoengineering agreement, public perceptions of geoengineering, technical controllability, and the severity of climate impacts. These elements were not studied in the scientific knowledge-building scenarios, suggesting the need for an additional category of scenarios. Aligning with concepts of sustainability science, new geoengineering scenario exercises would merge participatory practices of exploratory scenarios with deterministic practices of technical scientific scenarios.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alcamo J (2008) Environmental futures: the practice of environmental scenario analysis. Elsevier Science, Burlington

    Google Scholar 

  2. Amelung D, Funke J (2014) Laypeople’s risky decisions in the climate change context: climate engineering as a risk-defusing strategy? Hum Ecol Risk Assess Int J. https://doi.org/10.1080/10807039.2014.932203

    Article  Google Scholar 

  3. Anshelm J, Hansson A (2014) The last chance to save the planet? An analysis of the geoengineering advocacy discourse in the public debate. Environ Humanit 5:101–123. https://doi.org/10.1215/22011919-3615433

    Article  Google Scholar 

  4. Arino Y, Akimoto K, Sano F et al (2016) Estimating option values of solar radiation management assuming that climate sensitivity is uncertain. Proc Natl Acad Sci 113:5886–5891. https://doi.org/10.1073/pnas.1520795113

    Article  CAS  Google Scholar 

  5. Baatz C (2016) Can we have it both ways? On potential trade-offs between mitigation and solar radiation management. Environ Values 25:29–49. https://doi.org/10.3197/096327115X14497392134847

    Article  Google Scholar 

  6. Bala G, Caldeira K, Nemani R et al (2011) Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle. Clim Dyn 37:915–931. https://doi.org/10.1007/s00382-010-0868-1

    Article  Google Scholar 

  7. Banerjee B, Collins G, Low S, Blackstock JJ (2013) Scenario planning for solar radiation management. Yale Climate and Energy Institute and Centre for International Governance Innovation, New Haven

    Google Scholar 

  8. Barben D, Fisher E, Selin C, Guston DH (2008) Anticipatory governance of nanotechnology: foresight, engagement, and integration. In: Hackett EJ (ed) The handbook of science and technology studies, 3rd edn. The MIT Press and the Society for the Social Studies of Science, Cambridge, MA, pp 979–1000

    Google Scholar 

  9. Baum S, Maher T Jr, Haqq-Misra J (2013) Double catastrophe: intermittent stratospheric geoengineering induced by societal collapse. Environ Syst Decis 33:168–180. https://doi.org/10.1007/s10669-012-9429-y

    Article  Google Scholar 

  10. Bellamy R, Healey P (2015) A report on the Climate Geoengineering Governance Project Scenarios Workshop. Institute for Science, Innovation and Society, University of Oxford, Oxford

    Google Scholar 

  11. Belter CW, Seidel DJ (2013) A bibliometric analysis of climate engineering research. Wiley Interdiscip Rev Clim Change 4:417–427. https://doi.org/10.1002/wcc.229

    Article  Google Scholar 

  12. Bickel JE (2013) Climate engineering and climate tipping-point scenarios. Environ Syst Decis 33:152–167. https://doi.org/10.1007/s10669-013-9435-8

    Article  Google Scholar 

  13. Bishop P, Hines A, Collins T (2007) The current state of scenario development: an overview of techniques. Foresight 9:5–25. https://doi.org/10.1108/14636680710727516

    Article  Google Scholar 

  14. Bodansky D (2013) The who, what, and wherefore of geoengineering governance. Clim Change 121:539–551. https://doi.org/10.1007/s10584-013-0759-7

    Article  Google Scholar 

  15. Borup M, Konrad K (2004) Expectations in nanotechnology and in energy—foresight in the sea of expectations. Risø, Denmark

    Google Scholar 

  16. Borup M, Brown N, Konrad K, Lente HV (2006) The sociology of expectations in science and technology. Technol Anal Strateg Manag 18:285–298. https://doi.org/10.1080/09537320600777002

    Article  Google Scholar 

  17. Böttcher M, Gabriel J, Low S (2016) Solar radiation management: foresight for governance. Institute for Advanced Sustainability Studies, Potsdam

    Google Scholar 

  18. Brown N, Michael M (2003) A sociology of expectations: retrospecting prospects and prospecting retrospects. Technol Anal Strateg Manag 15:3–18. https://doi.org/10.1080/0953732032000046024

    Article  Google Scholar 

  19. Cairns RC (2014) Climate geoengineering: issues of path-dependence and socio-technical lock-in. Wiley Interdiscip Rev Clim Change 5:649–661. https://doi.org/10.1002/wcc.296

    Article  Google Scholar 

  20. Cao L, Duan L, Bala G, Caldeira K (2017) Simultaneous stabilization of global temperature and precipitation through cocktail geoengineering. Geophys Res Lett 44:2017GL074281. https://doi.org/10.1002/2017GL074281

    Article  Google Scholar 

  21. Clark WC (2007) Sustainability science: a room of its own. Proc Natl Acad Sci 104:1737–1738. https://doi.org/10.1073/pnas.0611291104

    Article  CAS  Google Scholar 

  22. Clark WC, Dickson NM (2003) Sustainability science: the emerging research program. Proc Natl Acad Sci 100:8059–8061. https://doi.org/10.1073/pnas.1231333100

    Article  CAS  Google Scholar 

  23. Corner A, Pidgeon N (2014) Like artificial trees? The effect of framing by natural analogy on public perceptions of geoengineering. Clim Change 1–14. https://doi.org/10.1007/s10584-014-1148-6

  24. Couce E, Irvine PJ, Gregoire LJ et al (2013) Tropical coral reef habitat in a geoengineered, high-CO2 world. Geophys Res Lett 40:1799–1805. https://doi.org/10.1002/grl.50340

    Article  Google Scholar 

  25. Cressey D (2012) Geoengineering experiment cancelled amid patent row. Nature 10:1038. https://doi.org/10.1038/nature.2012.10645

    Article  Google Scholar 

  26. Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77:211–220. https://doi.org/10.1007/s10584-006-9101-y

    Article  CAS  Google Scholar 

  27. de Larragan JD (2012) The future of international climate change law: a scenario-based perspective. Clim Policy 12:S6–S27. https://doi.org/10.1080/14693062.2012.709698

    Article  Google Scholar 

  28. Fiksel J (2006) Sustainability and resilience: toward a systems approach. Sustain Sci Pract Policy Bethesda. https://doi.org/10.1109/EMR.2007.4296420

    Article  Google Scholar 

  29. Fragnière A, Gardiner S (2016) Why geoengineering is not “plan B”. In: Climate Justice and Geoengineering. Rowman & Littlefield

  30. Funtowicz S, Ravetz J (2003) Post-normal science. In: International Society for Ecological Economics (ed) Online Encyclopedia of Ecological Economics

  31. Godet M (2015) Methods of prospective—softwares. http://en.laprospective.fr/methods-of-prospective/softwares.html

  32. Goes M, Tuana N, Keller K (2011) The economics (or lack thereof) of aerosol geoengineering. Clim Change 109:719–744. https://doi.org/10.1007/s10584-010-9961-z

    Article  Google Scholar 

  33. Grin J, Grunwald A (2000) Vision assessment: shaping technology in 21st Century society: towards a repertoire for technology assessment. Springer, Berlin Heidelberg

    Book  Google Scholar 

  34. Guston DH (2014) Understanding ‘anticipatory governance’. Soc Stud Sci 44:218–242. https://doi.org/10.1177/0306312713508669

    Article  Google Scholar 

  35. Haasnoot M, Middelkoop H (2012) A history of futures: a review of scenario use in water policy studies in the Netherlands. Environ Sci Policy 19–20:108–120. https://doi.org/10.1016/j.envsci.2012.03.002

    Article  Google Scholar 

  36. Haraguchi M, Liu R, Randhawa J et al (2015) Human intervention in the earth’s climate: the governance of geoengineering in 2025+. Global Governance Futures

  37. Heyen D, Wiertz T, Irvine PJ (2015) Regional disparities in SRM impacts: the challenge of diverging preferences. Clim Change 133:557–563. https://doi.org/10.1007/s10584-015-1526-8

    Article  Google Scholar 

  38. Horton JB (2011) Geoengineering and the myth of unilateralism: pressures and prospects for international cooperation. Stanf J Law Sci Policy SJLSP Volume 4:56

    Google Scholar 

  39. Horton JB (2015) The emergency framing of solar geoengineering: time for a different approach. Anthr Rev. https://doi.org/10.1177/2053019615579922

    Article  Google Scholar 

  40. Hulme M, Dessai S (2008) Predicting, deciding, learning: can one evaluate the “success” of national climate scenarios? Environ Res Lett 3:045013. https://doi.org/10.1088/1748-9326/3/4/045013

    Article  Google Scholar 

  41. Huttunen S, Hildén M (2014) Framing the controversial: geoengineering in academic literature. Sci Commun 36:3–29. https://doi.org/10.1177/1075547013492435

    Article  Google Scholar 

  42. Jackson LS, Crook JA, Jarvis A et al (2015) Assessing the controllability of Arctic sea ice extent by sulfate aerosol geoengineering. Geophys Res Lett 2014GL062240. https://doi.org/10.1002/2014GL062240

  43. Jones AC, Haywood JM, Jones A (2016) Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection. Atmos Chem Phys 16:2843–2862. https://doi.org/10.5194/acp-16-2843-2016

    Article  CAS  Google Scholar 

  44. Jørgensen MS, Jørgensen U, Clausen C (2009) The social shaping approach to technology foresight. Futures 41:80–86. https://doi.org/10.1016/j.futures.2008.07.038

    Article  Google Scholar 

  45. Kahn H, Wiener A (1967) The year 2000: a framework for speculation on the next 33 years. Macmillan, New York

    Google Scholar 

  46. Kajikawa Y (2008) Research core and framework of sustainability science. Sustain Sci 3:215–239. https://doi.org/10.1007/s11625-008-0053-1

    Article  Google Scholar 

  47. Kates RW, Clark WC, Corell R et al (2001) Sustainability science. Science 292:641–642. https://doi.org/10.1126/science.1059386

    Article  CAS  Google Scholar 

  48. Keith DW, Irvine PJ (2016) Solar geoengineering could substantially reduce climate risks—a research hypothesis for the next decade. Earths Future 4:2016EF000465. https://doi.org/10.1002/2016EF000465

    Article  Google Scholar 

  49. Keith DW, Parson E, Morgan MG (2010) Research on global sun block needed now. Nature 463:426–427. https://doi.org/10.1038/463426a

    Article  CAS  Google Scholar 

  50. Kleinschmitt C, Boucher O, Platt U (2017) Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2 injection studied with the LMDZ-S3A model. Atmos Chem Phys Discuss 2017:1–34. https://doi.org/10.5194/acp-2017-722

    Article  Google Scholar 

  51. Kravitz B, Robock A, Boucher O et al (2011) The geoengineering model intercomparison project (GeoMIP). Atmospheric Sci Lett 12:162–167. https://doi.org/10.1002/asl.316

    Article  Google Scholar 

  52. Kravitz B, Forster PM, Jones A et al (2013) Sea spray geoengineering experiments in the geoengineering model intercomparison project (GeoMIP): experimental design and preliminary results. J Geophys Res Atmos 118:2013JD020351. https://doi.org/10.1002/jgrd.50856

    Article  Google Scholar 

  53. Kravitz B, Robock A, Tilmes S et al (2015) The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results. Geosci Model Dev 8:3379–3392. https://doi.org/10.5194/gmd-8-3379-2015

    Article  CAS  Google Scholar 

  54. Laakso A, Kokkola H, Partanen A-I et al (2016) Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering. Atmos Chem Phys 16:305–323. https://doi.org/10.5194/acp-16-305-2016

    Article  CAS  Google Scholar 

  55. Lang DJ, Wiek A, Bergmann M et al (2012) Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain Sci 7:25–43. https://doi.org/10.1007/s11625-011-0149-x

    Article  Google Scholar 

  56. Lempert R (2013) Scenarios that illuminate vulnerabilities and robust responses. Clim Change 117:627–646. https://doi.org/10.1007/s10584-012-0574-6

    Article  Google Scholar 

  57. Lempert R, Prosnitz D (2011) Governing geoengineering research—a political and technical vulnerability analysis of potential near-term options. RAND Corporation

  58. Lenton TM (2014) The Global Potential for Carbon Dioxide Removal. In: Harrison RM, Hester RE, Royal Society of Chemistry (Great Britain) (eds) Geoengineering of the climate system. Royal Society of Chemistry, Cambridge, pp 52–79

    Chapter  Google Scholar 

  59. Linnér B-O, Wibeck V (2015) Dual high-stake emerging technologies: a review of the climate engineering research literature. Wiley Interdiscip Rev Clim Change 6:255–268. https://doi.org/10.1002/wcc.333

    Article  Google Scholar 

  60. Low S (2017) The futures of climate engineering. Earths Future 5:67–71. https://doi.org/10.1002/2016EF000442

    Article  Google Scholar 

  61. Luokkanen M, Huttunen S, Hildén M (2013) Geoengineering, news media and metaphors: framing the controversial. Public Underst Sci. https://doi.org/10.1177/0963662513475966

    Article  Google Scholar 

  62. Martens P (2007) Sustainability: science or fiction? IEEE Eng Manag Rev 35:70–70. https://doi.org/10.1109/EMR.2007.4296430

    Article  Google Scholar 

  63. McCusker KE, Armour KC, Bitz CM, Battisti DS (2014) Rapid and extensive warming following cessation of solar radiation management. Environ Res Lett 9:024005. https://doi.org/10.1088/1748-9326/9/2/024005

    Article  Google Scholar 

  64. McDowall W, Eames M (2006) Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: a review of the hydrogen futures literature. Energy Policy 34:1236–1250. https://doi.org/10.1016/j.enpol.2005.12.006

    Article  Google Scholar 

  65. Mitchell RB, Tydeman J, Georgiades J (1979) Structuring the future—application of a scenario-generation procedure. Technol Forecast Soc Change 14:409–428. https://doi.org/10.1016/0040-1625(79)90038-6

    Article  Google Scholar 

  66. Moore JC, Jevrejeva S, Grinsted A (2010) Efficacy of geoengineering to limit 21st century sea-level rise. Proc Natl Acad Sci 107:15699–15703. https://doi.org/10.1073/pnas.1008153107

    Article  Google Scholar 

  67. Muri H, Niemeier U, Kristjánsson JE (2015) Tropical rainforest response to marine sky brightening climate engineering. Geophys Res Lett 42:2015GL063363. https://doi.org/10.1002/2015GL063363

    Article  Google Scholar 

  68. Niemeier U, Schmidt H, Timmreck C (2011) The dependency of geoengineered sulfate aerosol on the emission strategy. Atmos Sci Lett 12:189–194. https://doi.org/10.1002/asl.304

    Article  Google Scholar 

  69. Oldham P, Szerszynski B, Stilgoe J et al (2014) Mapping the landscape of climate engineering. Philos Trans R Soc A. https://doi.org/10.1098/rsta.2014.0065

    Article  Google Scholar 

  70. Olson RL (2011) Geoengineering for decision makers. Woodrow Wilson International Center for Scholars, Washington DC

    Google Scholar 

  71. Pahl-Wostl C (2002) Participative and stakeholder-based policy design, evaluation and modeling processes. Integr Assess 3:3–14. https://doi.org/10.1076/iaij.3.1.3.7409

    Article  Google Scholar 

  72. Parson EA (2014) Climate engineering in global climate governance: implications for participation and linkage. Transnatl Environ Law 3:89–110. https://doi.org/10.1017/S2047102513000496

    Article  Google Scholar 

  73. Rabitz F (2016) Going rogue? Scenarios for unilateral geoengineering. Futures 84(Part A):98–107. https://doi.org/10.1016/j.futures.2016.11.001

    Article  Google Scholar 

  74. Rasch PJ, Crutzen PJ, Coleman DB (2008) Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys Res Lett 35:L02809. https://doi.org/10.1029/2007GL032179

    Article  CAS  Google Scholar 

  75. Reynolds JL (2016) International law and climate engineering. In: Gerrard M, Hester T (eds) Climate engineering and the law: regulation and liability for solar radiation management and carbon dioxide removal. Cambridge University Press, New York

    Google Scholar 

  76. Richler J (2017) Geoengineering: perceived controllability. Nat Clim Change 7:624–624. https://doi.org/10.1038/nclimate3384

    Article  Google Scholar 

  77. Ricke K, Morgan MG, Apt J et al (2008) Unilateral geoengineering. Council of Foreign Relations, Washington, DC

    Google Scholar 

  78. Robock A (2012) Is geoengineering research ethical? SF Sicherh Frieden 30:226–229. https://doi.org/10.5771/0175-274x-2012-4-226

    Article  Google Scholar 

  79. Robock A, Oman L, Stenchikov GL (2008) Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J Geophys Res Atmos 113:D16101. https://doi.org/10.1029/2008JD010050

    Article  CAS  Google Scholar 

  80. Robock A, Bunzl M, Kravitz B, Stenchikov GL (2010) A test for geoengineering? Science 327:530–531. https://doi.org/10.1126/science.1186237

    Article  CAS  Google Scholar 

  81. Royal Society (2009) Geoengineering the climate: science, governance and uncertainty. Royal Society, London

    Google Scholar 

  82. Schnaars SP (1987) How to develop and use scenarios. Long Range Plann 20:105–114. https://doi.org/10.1016/0024-6301(87)90038-0

    Article  Google Scholar 

  83. Schoemaker PJ (2004) Forecasting and scenario planning: the challenges of uncertainty and complexity. In: Koehler DJ, Harvey N (eds) Blackwell handbook of judgment and decision making. Blackwell Publishing Ltd, Oxford, pp 274–296

    Chapter  Google Scholar 

  84. Scholte S, Vasileiadou E, Petersen AC (2013) Opening up the societal debate on climate engineering: how newspaper frames are changing. J Integr Environ Sci 10:1–16. https://doi.org/10.1080/1943815X.2012.759593

    Article  Google Scholar 

  85. Scholz RW, Steiner G (2015) Transdisciplinarity at the crossroads. Sustain Sci 10:521–526. https://doi.org/10.1007/s11625-015-0338-0

    Article  Google Scholar 

  86. Schwartz P, Randall D (2003) An abrupt climate change scenario and its implications for united states national security. Defense Technical Information Center

  87. Selin C (2007) Expectations and the emergence of nanotechnology. Sci Technol Hum Values 32:196–220. https://doi.org/10.1177/0162243906296918

    Article  Google Scholar 

  88. Selin C (2008) The sociology of the future: tracing stories of technology and time. Sociol Compass 2:1878–1895. https://doi.org/10.1111/j.1751-9020.2008.00147.x

    Article  Google Scholar 

  89. Sillmann J, Lenton TM, Levermann A et al (2015) Climate emergencies do not justify engineering the climate. Nat Clim Change 5:290–292. https://doi.org/10.1038/nclimate2539

    Article  Google Scholar 

  90. Stilgoe J (2015) Experiment earth: responsible innovation in geoengineering. Taylor and Francis, Florence

    Book  Google Scholar 

  91. Stokes DE (1997) Pasteur’s quadrant: basic science and technological innovation. Brookings Institution Press, Washington, DC

    Google Scholar 

  92. Sugiyama M, Arino Y, Kosugi T et al (2017) Next steps in geoengineering scenario research: limited deployment scenarios and beyond. Clim Policy 0:1–9. https://doi.org/10.1080/14693062.2017.1323721

    Article  Google Scholar 

  93. Sundberg M (2011) The dynamics of coordinated comparisons: how simulationists in astrophysics, oceanography and meteorology create standards for results. Soc Stud Sci 41:107–125. https://doi.org/10.1177/0306312710385743

    Article  Google Scholar 

  94. Svoboda T (2012) Is aerosol geoengineering ethically preferable to other climate change strategies? Ethics Environ 17:111–135. https://doi.org/10.2979/ethicsenviro.17.2.111

    Article  Google Scholar 

  95. Sweeney JA (2014) Command-and-control: alternative futures of geoengineering in an age of global weirding. Futures 57:1–13. https://doi.org/10.1016/j.futures.2013.12.005

    Article  Google Scholar 

  96. Talberg A, Christoff P, Thomas S, Karoly D (2017) Geoengineering governance-by-default: an earth system governance perspective. Int Environ Agreem Polit Law Econ. https://doi.org/10.1007/s10784-017-9374-9

    Article  Google Scholar 

  97. Taleb N (2007) The black swan: the impact of the highly improbable, 1st edn. Random House, New York

    Google Scholar 

  98. Tilmes S, Jahn A, Kay JE et al (2014) Can regional climate engineering save the summer Arctic sea ice? Geophys Res Lett 41:880–885. https://doi.org/10.1002/2013GL058731

    Article  Google Scholar 

  99. Trutnevyte E, McDowall W, Tomei J, Keppo I (2016) Energy scenario choices: insights from a retrospective review of UK energy futures. Renew Sustain Energy Rev 55:326–337. https://doi.org/10.1016/j.rser.2015.10.067

    Article  Google Scholar 

  100. Turner BL, Kasperson RE, Matson PA et al (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci 100:8074–8079. https://doi.org/10.1073/pnas.1231335100

    Article  CAS  Google Scholar 

  101. van Notten PWF, Rotmans J, van Asselt MBA, Rothman DS (2003) An updated scenario typology. Futures 35:423–443. https://doi.org/10.1016/S0016-3287(02)00090-3

    Article  Google Scholar 

  102. van der Heijden K (2005) Scenarios: the art of strategic conversation. Wiley, Chichester

    Google Scholar 

  103. Vaughan NE, Lenton TM (2012) Interactions between reducing CO2 emissions, CO2 removal and solar radiation management. Philos Trans R Soc Math Phys Eng Sci 370:4343–4364. https://doi.org/10.1098/rsta.2012.0188

    Article  CAS  Google Scholar 

  104. Wiek A, Ness B, Schweizer-Ries P et al (2012) From complex systems analysis to transformational change: a comparative appraisal of sustainability science projects. Sustain Sci 7:5–24. https://doi.org/10.1007/s11625-011-0148-y

    Article  Google Scholar 

  105. Wiertz T (2015) Visions of climate control solar radiation management in climate simulations. Sci Technol Hum Values 0162243915606524. https://doi.org/10.1177/0162243915606524

  106. Wilkinson A (2009) Scenarios practices: in search of theory. J Futur Stud 13:107–114

    Google Scholar 

  107. Wu P, Ridley J, Pardaens A et al (2014) The reversibility of CO2 induced climate change. Clim Dyn 45:745–754. https://doi.org/10.1007/s00382-014-2302-6

    Article  Google Scholar 

  108. Xia L, Robock A, Cole J et al (2014) Solar radiation management impacts on agriculture in China: a case study in the geoengineering model intercomparison project (GeoMIP). J Geophys Res Atmos 2013JD020630. https://doi.org/10.1002/2013JD020630

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anita Talberg.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handled by Dr. Osamu Saito, United Nations University Institute for the Advanced Study of Sustainability, Japan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 69 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Talberg, A., Thomas, S., Christoff, P. et al. How geoengineering scenarios frame assumptions and create expectations. Sustain Sci 13, 1093–1104 (2018). https://doi.org/10.1007/s11625-018-0527-8

Download citation

Keywords

  • Geoengineering
  • Scenarios
  • Sustainability science
  • Expectations
  • Anticipatory governance