Advertisement

Journal of Gastrointestinal Surgery

, Volume 23, Issue 2, pp 320–330 | Cite as

Intraoperative Vagus Nerve Stimulation Accelerates Postoperative Recovery in Rats

  • Haruaki Murakami
  • Shiying Li
  • Robert Foreman
  • Jieyun Yin
  • Toshihiro Hirai
  • Jiande D. Z. ChenEmail author
Original Article
  • 150 Downloads

Abstract

Introduction

Postoperative ileus (POI) is a heavy burden for healthcare industries and reduces the postoperative quality of life. The aim of this study was to investigate the effects and mechanisms of the intraoperative vagus nerve stimulation (iVNS) on gastrointestinal motility in a rodent model of POI.

Methods

For control group (control, n = 8), electrodes were placed on the chest wall for recording the electrocardiogram and on the stomach and small intestine for measuring gastric slow waves (GSWs) and small intestinal slow waves (SSWs). For sham group (sham, n = 8) and iVNS group (VNS, n = 8), after the same surgery as the control, intestinal manipulation (IM) was performed to induce POI. iVNS was performed during the surgery for the iVNS group. Small intestinal transit (SIT), gastric emptying (GE), postoperative pain, and plasma TNF-α were evaluated after operation.

Results

IM delayed GE that was normalized by iVNS (P < 0.05). iVNS reduced plasma TNF-α increased by IM (P = 0.04). iVNS prevents the injury of ileum mucosa induced by IM (P < 0.05). iVNS reduced the postoperative pain (P < 0.05). iVNS prevented the IM-induced decrease in vagal activity (sham 0–30 min vs. 150–180 min, P = 0.03, VNS 0–30 min vs. 150–180 min, P = 0.58) and increase in sympathovagal balance (sham 0–30 min vs. 150–180 min, P = 0.04, VNS 0–30 min vs. 150–180 min, P = 0.72).

Conclusions

iVNS accelerates postoperative recovery by improving GE, reducing postoperative pain, and preventing the injury of ileum mucosa mediated via the autonomic mechanisms.

Keywords

Intraoperative vagus nerve stimulation Postoperative recovery Postoperative ileus Motility Pain Inflammation 

Notes

Author Contributions

Haruaki Murakami, Shiying Li, and Jieyun Yin, performed the research; Jiande DZ Chen, Robert Foreman, and Toshihiro Hirai designed the research study; Haruaki Murakami, Shiying Li, Robert Foreman, Jieyun Yin, and Jiande DZ Chen analyzed the data; Haruaki Murakami wrote the paper; and Haruaki Murakami, Shiying Li, Robert Foreman, Jieyun Yin, Toshihiro Hirai, and Jiande DZ Chen approved the final version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding Information

This work was partially financially supported by a grant from Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK.

References

  1. 1.
    Ellozy SH, Harris MT, Bauer JJ, Gorfine SR, Kreel I. Early postoperative small-bowel obstruction: a prospective evaluation in 242 consecutive abdominal operations. Dis Colon Rectum 2002 ;45(9):1214–7CrossRefGoogle Scholar
  2. 2.
    Tortella BJ, Lavery RF, Chandrakantan A, Medina D. Incidence and risk factors for early small bowel obstruction after celiotomy for penetrating abdominal trauma. Am Surg 1995;61:956–958Google Scholar
  3. 3.
    Azimuddin K, Rosen L, Reed III JF. Computerized assessment of complications after colorectal surgery. Dis Colon Rectum 2001;44:500–505CrossRefGoogle Scholar
  4. 4.
    Carr DH, Brooks FP. Vagally induced gastric antral contractions and gastric emptying of a liquid test meal.Q J Exp Physiol Cogn Med Sci 1978 ; 63(1):49–58Google Scholar
  5. 5.
    Krolczyk G, Zurowski D, Sobocki J, Słowiaczek MP, Laskiewicz J, Matyja A, Zaraska K, Zaraska W, Thor PJ. Effects of continuous microchip (MC) vagal neuromodulation on gastrointestinal function in rats. J Physiol Pharmacol 2001 ;52(4 Pt 1):705–15Google Scholar
  6. 6.
    Królczyk G, Zurowski D, Dobrek Ł, Laskiewicz J, Thor PJ. The role of vagal efferents in regulation of gastric emptying and motility in rats. Folia Med Cracov 2001;42(3):141–8Google Scholar
  7. 7.
    Venkova K, Fraser G, Hoveyda HR, Greenwood-Van Meerveld B. Prokinetic effects of a new ghrelin receptor agonist TZP-101 in a rat model of postoperative ileus. Dig Dis Sci.2007 ;52(9):2241–8CrossRefGoogle Scholar
  8. 8.
    Yin J, Chen J, Chen JD. Ameliorating effects and mechanisms of electroacupuncture on gastric dysrhythmia, delayed emptying, and impaired accommodation in diabetic rats. Am J Physiol Gastrointest Liver Physiol 2010 ;298(4):G563–70CrossRefGoogle Scholar
  9. 9.
    Jin H, Guo J, Liu J, Lyu B, Foreman RD, Yin J, Shi Z, Chen JDZ. Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2017 Sep 1;313(3):G192-G202)CrossRefGoogle Scholar
  10. 10.
    Scarpignato C, Capovilla T, BerAtaccini G. Action of caerulein on gastric emptying of the conscious rat. Arch Int Pharmacodyn Ther 1980 ;246(2):286–94Google Scholar
  11. 11.
    Sallam HS, Oliveira HM, Gan HT, Herndon DN, Chen JD. Ghrelin improves burn-induced delayed gastrointestinal transit in rats. Am J Physiol Regul Integr Comp Physiol 2007 ;292(1):R253–7CrossRefGoogle Scholar
  12. 12.
    Liu J, Qiao X, Chen JD. Vagal afferent is involved in short-pulse gastric electrical stimulation in rats. Dig Dis Sci 2004;49: 729–737CrossRefGoogle Scholar
  13. 13.
    Kruger C, Kalenka A, Haunstetter A, Schweizer M, Maier C, RuhleU, Ehmke H, Kubler W, Haass M. Baroreflex sensitivity and heart rate variability in conscious rats with myocardial infarction. Am J Physiol Heart Circ Physiol 1997; 273: H2240 –H2247CrossRefGoogle Scholar
  14. 14.
    Cuzzocrea S, Chatterjee PK, Mazzon E, Dugo L, De Sarro A, Van de Loo FA, Caputi AP, Thiemermann C. Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock 2002 ;18(2):169–76CrossRefGoogle Scholar
  15. 15.
    Sotocinal SG, Sorge RE, Zaloum A, Tuttle AH, Martin LJ, Wieskopf JS, Mapplebeck JC, Wei P, Zhan S, Zhang S, McDougall JJ, King OD, Mogil JS. The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain 2011 Jul 29;7:55Google Scholar
  16. 16.
    Holle GE, Steinbach E, Forth W. Effects of erythromycin in the dog upper gastrointestinal tract. Am J Physiol 1992 ;263(1 Pt 1):G52–9Google Scholar
  17. 17.
    Jansen K, Vandeput S, Milosevic M, Ceulemans B, Van Huffel S, Brown L, Penders J, Lagae L. Autonomic effects of refractory epilepsy on heart rate variability in children: influence of intermittent vagus nerve stimulation. Dev Med Child Neurol 2011 ;53(12):1143–9CrossRefGoogle Scholar
  18. 18.
    Chen SL, Wu XY, Cao ZJ, Fan J, Wang M, Owyang C, Li Y. Subdiaphragmatic vagal afferent nerves modulate visceral pain. Am J Physiol Gastrointest Liver Physiol 2008 Jun;294(6):G1441–9CrossRefGoogle Scholar
  19. 19.
    Zurowski D, Nowak Ł, Wordliczek J, Dobrogowski J, Thor PJ. Effects of vagus nerve stimulation in visceral pain model. Folia Med Cracov 2012;52(1–2):57–69Google Scholar
  20. 20.
    Inoue T, Abe C, Sung SS, Moscalu S, Jankowski J, Huang L, Ye H, Rosin DL, Guyenet PG, Okusa MD. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J Clin Invest 2016 ;126(5):1939–52CrossRefGoogle Scholar
  21. 21.
    Inoue T, Abe C, Sung SS, Moscalu S, Jankowski J, Huang L, Ye H, Rosin DL, Guyenet PG, Okusa MD. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J Clin Invest. 2016 ;126(5):1939–52CrossRefGoogle Scholar
  22. 22.
    Niederbichler AD, Papst S, Claassen L, Jokuszies A, Steinstraesser L, Hirsch T, Altintas MA, Ipaktchi KR, Reimers K, Kraft T, Vogt PM. Burn-induced organ dysfunction: vagus nerve stimulation attenuates organ and plasma cytokine levels. Burns 2009; 35: 783–78CrossRefGoogle Scholar
  23. 23.
    Song XM, Li JG, Wang YL, Liang H, Huang Y, Yuan X, Zhou Q, Zhang ZZ. Effect of vagus nerve stimulation on thermal injury in rats. Burns 2010; 36: 75–81CrossRefGoogle Scholar
  24. 24.
    Bansal V, Costantini T, Ryu SY, Peterson C, Loomis W, Putnam J, Elicieri B, Baird A, Coimbra R. Stimulating the central nervous system to prevent intestinal dysfunction after traumatic brain injury. J Trauma 2010; 68: 1059–1064CrossRefGoogle Scholar
  25. 25.
    Ay I, Nasser R, Simon B, Ay H. Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats. Brain Stimul 2016; 9(2):166–73CrossRefGoogle Scholar
  26. 26.
    Lu X, Costantini T, Lopez NE, Wolf PL, Hageny AM, Putnam J, Eliceiri B, Coimbra R. Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model. J Cell Mol Med 2013 ;17(5):664–71CrossRefGoogle Scholar

Copyright information

© The Society for Surgery of the Alimentary Tract 2018

Authors and Affiliations

  • Haruaki Murakami
    • 1
    • 2
    • 3
  • Shiying Li
    • 1
    • 2
  • Robert Foreman
    • 2
  • Jieyun Yin
    • 1
    • 4
  • Toshihiro Hirai
    • 3
  • Jiande D. Z. Chen
    • 1
    • 4
    Email author
  1. 1.Veterans Research and Education FoundationOklahoma City VA Medical CenterOklahoma CityUSA
  2. 2.Department of PhysiologyUniversity of OklahomaNormanUSA
  3. 3.Department of Digestive SurgeryKawasaki Medical SchoolOkayamaJapan
  4. 4.Division of Gastroenterology and HepatologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations