Skip to main content

Advertisement

Log in

Concomitant PPARα and FXR Activation as a Putative Mechanism of NASH Improvement after Gastric Bypass Surgery: a GEO Datasets Analysis

  • 2018 SSAT Plenary Presentation
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Background

Compared to non-surgical weight loss (Diet), weight loss after Roux-en-Y gastric bypass (RYGB) results in greater rates of non-alcoholic steatohepatitis (NASH) resolution. Changes in bile acid physiology and farnesoid X receptor (FXR) signaling are suspected mediators of postoperative NASH improvement. Recent experimental evidence suggests that upregulation of hepatic peroxisome proliferator-activated receptor α (PPARα) activity might also impact NASH improvement. As FXR partly regulates PPARα, we compared resolution of NASH and changes in hepatic PPARα and FXR gene expression following Diet and RYGB.

Methods

We searched the Gene Expression Omnibus database to identify human studies with liver biopsies containing genomic data and histologic NASH features, at baseline and after Diet or RYGB. Microarray data were extracted for PPARα and FXR gene expression analyses using GEOquery R package v.2.42.0.

Results

We identified one study (GSE83452) where patients underwent either Diet (n = 29) or RYGB (n = 25). NASH prevalence was similar at baseline (Diet 76% versus RYGB 60%, P = ns). After 1 year, NASH resolved in 93.3% of RYGB but only in 27.3% of Diet (P < 0.001). Hepatic PPARα and FXR gene expression increased only after RYGB (P < 0.001). These changes were also found when analyzing only patients that resolved NASH (P < 0.01), and patients without NASH at baseline and follow-up (P < 0.05).

Conclusions

Compared to Diet, RYGB results in greater NASH resolution with concurrent upregulation of hepatic PPARα and FXR. Our findings point to concurrent PPARα and FXR activation, triggered by RYGB, as a potential mechanism to improve NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Machado M, Cortez-Pinto H. Non-alcoholic steatohepatitis and metabolic syndrome. Curr Opin Clin Nutr Metab Care. 2006;9(5):637–42.

    Article  PubMed  Google Scholar 

  2. Rabl C, Campos GM. The impact of bariatric surgery on nonalcoholic steatohepatitis. Semin Liver Dis. 2012;32(1):80–91.

    Article  CAS  PubMed  Google Scholar 

  3. Angulo P. NAFLD, obesity, and bariatric surgery. Gastroenterology. 2006;130(6):1848–52.

    Article  PubMed  Google Scholar 

  4. NCD-RisC. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377–96.

    Article  Google Scholar 

  5. Penney NC, Kinross J, Newton RC, Purkayastha S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes (Lond). 2015;39(11):1565–74.

    Article  CAS  Google Scholar 

  6. Kohli R, Myronovych A, Tan BK, Salazar-Gonzalez RM, Miles L, Zhang W, et al. Bile Acid Signaling: Mechanism for Bariatric Surgery, Cure for NASH? Dig Dis. 2015;33(3):440–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jahansouz C, Xu H, Hertzel AV, Serrot FJ, Kvalheim N, Cole A, et al. Bile Acids Increase Independently From Hypocaloric Restriction After Bariatric Surgery. Ann Surg. 2016;264(6):1022–8.

    Article  PubMed  Google Scholar 

  8. Risstad H, Kristinsson JA, Fagerland MW, le Roux CW, Birkeland KI, Gulseth HL, et al. Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial. Surg Obes Relat Dis. 2017;13(9):1544–1553.

  9. Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology. 2017;152(7):1679–94.e3.

    Article  CAS  PubMed  Google Scholar 

  10. Steinert RE, Peterli R, Keller S, Meyer-Gerspach AC, Drewe J, Peters T, et al. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity (Silver Spring). 2013;21(12):E660–8.

    Article  CAS  Google Scholar 

  11. Fouladi F, Mitchell JE, Wonderlich JA, Steffen KJ. The Contributing Role of Bile Acids to Metabolic Improvements After Obesity and Metabolic Surgery. Obes Surg. 2016;26(10):2492–502.

    Article  PubMed  Google Scholar 

  12. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaska L, Sledzinski T, Chomiczewska A, Dettlaff-Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol. 2016;22(39):8698–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han CY, Kim TH, Koo JH, Kim SG. Farnesoid X receptor as a regulator of fuel consumption and mitochondrial function. Arch Pharm Res. 2016;39(8):1062–74.

    Article  CAS  PubMed  Google Scholar 

  15. Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297(3):E578–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kersten S. Integrated physiology and systems biology of PPARalpha. Mol Metab. 2014;3(4):354–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Francque S, Verrijken A, Caron S, Prawitt J, Paumelle R, Derudas B, et al. PPARalpha gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol. 2015;63(1):164–73.

    Article  CAS  PubMed  Google Scholar 

  18. Li T, Chiang JY. Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res. 2009;2009:501739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B. Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol Endocrinol. 2003;17(2):259–72.

    Article  CAS  PubMed  Google Scholar 

  20. Mazzini GS, Khoraki J, Browning MG, Campos GM. Concurrent miR-21 suppression and FXR activation as a mechanism of improvement in nonalcoholic fatty liver disease. Cell Death Dis. 2018;9(3):354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–5.

    CAS  PubMed  Google Scholar 

  22. GEO. GEO Documentation - GEO - NCBI 2018 [updated 10-17-2018; cited 2018 05–12]. Available from: https://www.ncbi.nlm.nih.gov/geo/info/.

  23. Lefebvre P, Lalloyer F, Bauge E, Pawlak M, Gheeraert C, Dehondt H, et al. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARalpha-regulated dermatopontin. JCI Insight. 2017;2(13):e92264.

  24. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005–23.

    Article  PubMed  Google Scholar 

  25. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, et al. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology. 2015;149(2):367–78.e5; quiz e14–5.

    Article  PubMed  Google Scholar 

  26. Lassailly G, Caiazzo R, Buob D, Pigeyre M, Verkindt H, Labreuche J, et al. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology. 2015;149(2):379–88; quiz e15–6.

    Article  PubMed  Google Scholar 

  27. Browning MG, Campos GM. Bile acid physiology as the potential driver for the sustained metabolic improvements with bariatric surgery. Surg Obes Relat Dis. 2017;13(9):1553–4.

    Article  PubMed  Google Scholar 

  28. Tsuchiya T, Naitoh T, Nagao M, Tanaka N, Watanabe K, Imoto H, et al. Increased Bile Acid Signals After Duodenal-Jejunal Bypass Improve Non-alcoholic Steatohepatitis (NASH) in a Rodent Model of Diet-Induced NASH. Obes Surg. 2018;28(6):1643–1652.

  29. Yoshikawa T, Ide T, Shimano H, Yahagi N, Amemiya-Kudo M, Matsuzaka T, et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol. 2003;17(7):1240–54.

    Article  CAS  PubMed  Google Scholar 

  30. Ide T, Shimano H, Yoshikawa T, Yahagi N, Amemiya-Kudo M, Matsuzaka T, et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol. 2003;17(7):1255–67.

    Article  CAS  PubMed  Google Scholar 

  31. Kim KH, Moore DD. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor alpha. Dig Dis. 2017;35(3):203–9.

    Article  PubMed  Google Scholar 

  32. Kassam A, Capone JP, Rachubinski RA. The short heterodimer partner receptor differentially modulates peroxisome proliferator-activated receptor alpha-mediated transcription from the peroxisome proliferator-response elements of the genes encoding the peroxisomal beta-oxidation enzymes acyl-CoA oxidase and hydratase-dehydrogenase. Mol Cell Endocrinol. 2001;176(1–2):49–56.

    Article  CAS  PubMed  Google Scholar 

  33. Rodrigues PM, Afonso MB, Simao AL, Carvalho CC, Trindade A, Duarte A, et al. miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice. Cell Death Dis. 2017;8(4):e2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest. 1999;103(11):1489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Videla LA, Pettinelli P. Misregulation of PPAR Functioning and Its Pathogenic Consequences Associated with Nonalcoholic Fatty Liver Disease in Human Obesity. PPAR Res. 2012;2012:107434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Veiga FMS, Graus-Nunes F, Rachid TL, Barreto AB, Mandarim-de-Lacerda CA, Souza-Mello V. Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): Hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice. Biochimie. 2017;140:106–16.

    Article  CAS  PubMed  Google Scholar 

  37. Pawlak M, Bauge E, Bourguet W, De Bosscher K, Lalloyer F, Tailleux A, et al. The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology. 2014;60(5):1593–606.

    Article  CAS  PubMed  Google Scholar 

  38. Loyer X, Paradis V, Henique C, Vion AC, Colnot N, Guerin CL, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARalpha expression. Gut. 2016;65(11):1882–94.

    Article  CAS  PubMed  Google Scholar 

  39. Younossi ZM, Loomba R, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, et al. Current and Future Therapeutic Regimens for Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. Hepatology. 2018;68(1):361–371.

  40. Tanaka N, Aoyama T, Kimura S, Gonzalez FJ. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther. 2017;179:142–157.

  41. ClinicalTrials. Randomized Global Phase 3 Study to Evaluate the Impact on NASH With Fibrosis of Obeticholic Acid Treatment - Full Text View - ClinicalTrials.gov 2018 [updated 01-24-2018; cited 2018 05–26]. Available from: https://clinicaltrials.gov/ct2/show/NCT02548351.

  42. Biemann R, Penner M, Borucki K, Westphal S, Luley C, Ronicke R, et al. Serum bile acids and GLP-1 decrease following telemetric induced weight loss: results of a randomized controlled trial. Sci Rep. 2016;6:30173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES (88887.145322/2017-00).

Author information

Authors and Affiliations

Authors

Contributions

Mazzini: conception, analysis, drafting, and final approval. Khoraki: GEO search and final approval. Dozmorov: GEO query and extraction, statistical analyses, drafting, and final approval. Browning: design, interpretation of data, drafting, and final approval. Wijesinghe: design, interpretation of data, drafting, and final approval. Wolfe: study design, statistical analyses, and final approval. Gurski: interpretation of data, revising critically, and final approval. Campos: study conception, design, interpretation of data, drafting, revision, and final approval.

Corresponding author

Correspondence to Guilherme M. Campos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzini, G.S., Khoraki, J., Dozmorov, M. et al. Concomitant PPARα and FXR Activation as a Putative Mechanism of NASH Improvement after Gastric Bypass Surgery: a GEO Datasets Analysis. J Gastrointest Surg 23, 51–57 (2019). https://doi.org/10.1007/s11605-018-3938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-018-3938-z

Keywords

Navigation