Skip to main content

Advertisement

Log in

Current State of Knowledge on Implications of Gut Microbiome for Surgical Conditions

  • Review Article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

The role of the microbiome in human health has become a central tenant of current medical research, infiltrating a diverse disciplinary base whereby microbiology, computer science, ecology, gastroenterology, immunology, neurophysiology and psychology, metabolism, and cardiovascular medicine all intersect. Traditionally, commensal gut microbiota have been assumed to play a significant role only in the metabolic processing of dietary nutrients and host metabolites, the fortification of gut epithelial barrier function, and the development of mucosal immunity. However, over the last 20 years, new technologies and renewed interest have uncovered a considerably broader influence of the microbiota on health maintenance and disease development, many of which are of particular relevance for surgeons. This article provides a broad overview of the current state of knowledge and a review of the technology that helped in their formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164:337–340

    Article  PubMed  CAS  Google Scholar 

  2. Cho I, Blaser MJ. The human microbiome: At the interface of health and disease. Nat Rev Genet. 2012;13:260–270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214

    Article  CAS  Google Scholar 

  4. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–1359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G, Jr., Goh YJ, et al. Prebiotics: Why definitions matter. Curr Opin Biotechnol. 2016;37:1–7

    Article  PubMed  CAS  Google Scholar 

  7. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–514

    Article  PubMed  Google Scholar 

  8. Fraher MH, O'Toole PW, Quigley EM. Techniques used to characterize the gut microbiota: A guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012;9:312–322

    Article  PubMed  CAS  Google Scholar 

  9. Matsen FAt. Phylogenetics and the human microbiome. Syst Biol. 2015;64:e26–41

    Article  CAS  Google Scholar 

  10. Sweeney TE, Morton JM. The human gut microbiome: A review of the effect of obesity and surgically induced weight loss. JAMA Surg. 2013;148:563–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Magouliotis DE, Tasiopoulou VS, Sioka E, Chatedaki C, Zacharoulis D. Impact of bariatric surgery on metabolic and gut microbiota profile: A systematic review and meta-analysis. Obes Surg. 2017;27:1345–1357

    Article  PubMed  Google Scholar 

  12. Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E. Non-alcoholic fatty liver and the gut microbiota. Molecular Metabolism. 2016;5:782–794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in nafld. Nat Rev Gastroenterol Hepatol. 2016;13:412–425

    Article  PubMed  CAS  Google Scholar 

  14. Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–1524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell host & microbe. 2014;15:317–328

    Article  CAS  Google Scholar 

  16. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12:661–672

    Article  PubMed  CAS  Google Scholar 

  17. Gagniere J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22:501–518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Guyton K, Alverdy JC. The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol. 2017;14:43–54

    Article  PubMed  CAS  Google Scholar 

  19. Chassaing B, Darfeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140:1720–1728

    Article  PubMed  Google Scholar 

  20. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology. 2014;146:1489–1499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9:599–608

    Article  PubMed  CAS  Google Scholar 

  22. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685–693

  23. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183–1196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:11070–11075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031

    Article  PubMed  Google Scholar 

  26. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022–1023

    Article  PubMed  CAS  Google Scholar 

  27. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546

    Article  PubMed  CAS  Google Scholar 

  28. Pallister T, Jackson MA, Martin TC, Glastonbury CA, Jennings A, Beaumont M, et al. Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling. Int J Obes (Lond). 2017;41:1106–1113

    Article  PubMed Central  CAS  Google Scholar 

  29. Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17:681–689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859–868

  31. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110:9066–9071

    Article  PubMed  PubMed Central  Google Scholar 

  32. Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61:543–553

    Article  PubMed  CAS  Google Scholar 

  33. Neyrinck AM, Van Hee VF, Bindels LB, De Backer F, Cani PD, Delzenne NM. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: Potential implication of the gut microbiota. Br J Nutr. 2013;109:802–809

    Article  PubMed  CAS  Google Scholar 

  34. Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased akkermansia spp. Population in the gut microbiota of mice. Gut. 2015;64:872–883

    Article  PubMed  CAS  Google Scholar 

  35. Buchwald H, Estok R, Fahrbach K, Banel D, Sledge I. Trends in mortality in bariatric surgery: A systematic review and meta-analysis. Surgery. 2007;142:621–632; discussion 632-625

    Article  PubMed  Google Scholar 

  36. Liou AP, Paziuk M, Luevano JM, Jr., Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra141

    Article  CAS  Google Scholar 

  37. Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: Links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–3057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106:2365–2370

    Article  PubMed  PubMed Central  Google Scholar 

  40. Samuel BS, Gordon JI. A Humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:10011–10016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jahansouz C, Staley C, Bernlohr DA, Sadowsky MJ, Khoruts A, Ikramuddin S. Sleeve gastrectomy drives persistent shifts in the gut microbiome. Surgery for obesity and related diseases: official journal of the American Society for Bariatric Surgery. 2017;13:916–924

    Article  Google Scholar 

  42. Rinella ME. Nonalcoholic fatty liver disease: A systematic review. JAMA. 2015;313:2263–2273

    Article  PubMed  CAS  Google Scholar 

  43. Dawes EA, Foster SM. The formation of ethanol in Escherichia coli. Biochimica et biophysica acta. 1956;22:253–265

    Article  PubMed  CAS  Google Scholar 

  44. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and nash. Hepatology. 2013;57:601–609

    Article  PubMed  CAS  Google Scholar 

  45. Cope K, Risby T, Diehl AM. Increased gastrointestinal ethanol production in obese mice: Implications for fatty liver disease pathogenesis. Gastroenterology. 2000;119:1340–1347

    Article  PubMed  CAS  Google Scholar 

  46. Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology. 1995;108:218–224

    Article  PubMed  CAS  Google Scholar 

  47. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kucera O, Cervinkova Z. Experimental models of non-alcoholic fatty liver disease in rats. World J Gastroenterol. 2014;20:8364–8376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Dumas M-E, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences. 2006;103:12511–12516

    Article  CAS  Google Scholar 

  50. Peterson LW, Artis D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature reviews. Immunology. 2014;14:141–153

    Article  PubMed  CAS  Google Scholar 

  51. Gäbele E, Dostert K, Hofmann C, Wiest R, Schölmerich J, Hellerbrand C, et al. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. Journal of Hepatology. 2011;55:1391–1399

    Article  PubMed  CAS  Google Scholar 

  52. Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut. 2009;58:704–720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49:1877–1887

    Article  PubMed  CAS  Google Scholar 

  54. Keusch GT. Opportunistic infections in colon carcinoma. Am J Clin Nutr. 1974;27:1481–1485

    Article  PubMed  CAS  Google Scholar 

  55. Waisberg J, Matheus Cde O, Pimenta J. Infectious endocarditis from streptococcus bovis associated with colonic carcinoma: Case report and literature review. Arquivos de gastroenterologia. 2002;39:177–180

    Article  PubMed  Google Scholar 

  56. Abdulamir AS, Hafidh RR, Bakar FA. Molecular detection, quantification, and isolation of streptococcus gallolyticus bacteria colonizing colorectal tumors: Inflammation-driven potential of carcinogenesis via IL-1, cox-2, and IL-8. Molecular Cancer. 2010;9:249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer research. 2008;68:9909–9917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM, Mullin JM. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis. 1999;20:1425–1432

    Article  PubMed  CAS  Google Scholar 

  59. Vizcaino MI, Crawford JM. The colibactin warhead crosslinks DNA. Nat Chem. 2015;7:411–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bernstein H, Bernstein C, Payne CM, Dvorak K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 2009;15:3329–3340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Reddy BS. Types and amount of dietary fat and colon cancer risk: Prevention by omega-3 fatty acid-rich diets. Environmental Health and Preventive Medicine. 2002;7:95–102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sanapareddy N, Legge RM, Jovov B, McCoy A, Burcal L, Araujo-Perez F, et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. Isme J. 2012;6:1858–1868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu WK, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015;6:8727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20

    PubMed  PubMed Central  Google Scholar 

  65. Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2015

  66. Alves A, Panis Y, Trancart D, Regimbeau J-M, Pocard M, Valleur P. Factors associated with clinically significant anastomotic leakage after large bowel resection: Multivariate analysis of 707 patients. World Journal of Surgery. 2002;26:499–502

    Article  PubMed  Google Scholar 

  67. Cohn I, Jr., Rives JD. Antibiotic protection of colon anastomoses. Ann Surg. 1955;141:707–717

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schardey HM, Joosten U, Finke U, Staubach KH, Schauer R, Heiss A, et al. The prevention of anastomotic leakage after total gastrectomy with local decontamination. A prospective, randomized, double-blind, placebo-controlled multicenter trial. Annals of Surgery. 1997;225:172–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Olivas AD, Shogan BD, Valuckaite V, Zaborin A, Belogortseva N, Musch M, et al. Intestinal tissues induce an SNP mutation in pseudomonas aeruginosa that enhances its virulence: Possible role in anastomotic leak. PloS one. 2012;7:e44326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Shogan BD, Belogortseva N, Luong PM, Zaborin A, Lax S, Bethel C, et al. Collagen degradation and mmp9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Science Translational Medicine. 2015;7:286ra268-286ra268

  71. de Lange KM, Barrett JC. Understanding inflammatory bowel disease via immunogenetics. Journal of autoimmunity. 2015;64:91–100

    Article  PubMed  CAS  Google Scholar 

  72. Sepehri S, Kotlowski R, Bernstein CN, Krause DO. Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflammatory bowel diseases. 2007;13:675–683

    Article  PubMed  Google Scholar 

  73. Martinez C, Antolin M, Santos J, Torrejon A, Casellas F, Borruel N, et al. Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am J Gastroenterol. 2008;103:643–648

    Article  PubMed  Google Scholar 

  74. Scanlan PD, Shanahan F, O'Mahony C, Marchesi JR. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol. 2006;44:3980–3988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127:412–421

    Article  PubMed  Google Scholar 

  76. Lapaquette P, Glasser AL, Huett A, Xavier RJ, Darfeuille-Michaud A. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cellular microbiology. 2010;12:99–113

    Article  PubMed  CAS  Google Scholar 

  77. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, et al. Reduced paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A. 2005;102:18129–18134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Barnich N, Carvalho FA, Glasser AL, Darcha C, Jantscheff P, Allez M, et al. Ceacam6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest. 2007;117:1566–1574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Bringer MA, Glasser AL, Tung CH, Meresse S, Darfeuille-Michaud A. The Crohn’s disease-associated adherent-invasive Escherichia coli strain lf82 replicates in mature phagolysosomes within j774 macrophages. Cellular microbiology. 2006;8:471–484

    Article  PubMed  CAS  Google Scholar 

  80. Glasser AL, Boudeau J, Barnich N, Perruchot MH, Colombel JF, Darfeuille-Michaud A. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun. 2001;69:5529–5537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ohkusa T, Sato N, Ogihara T, Morita K, Ogawa M, Okayasu I. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. Journal of gastroenterology and hepatology. 2002;17:849–853

    Article  PubMed  Google Scholar 

  82. Ohkusa T, Okayasu I, Ogihara T, Morita K, Ogawa M, Sato N. Induction of experimental ulcerative colitis by fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut. 2003;52:79–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of faecalibacterium prausnitzii in colitis microbiota. Inflammatory bowel diseases. 2009;15:1183–1189

    Article  PubMed  CAS  Google Scholar 

  84. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–16736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Llopis M, Antolin M, Carol M, Borruel N, Casellas F, Martinez C, et al. Lactobacillus casei downregulates commensals’ inflammatory signals in Crohn’s disease mucosa. Inflammatory bowel diseases. 2009;15:275–283

    Article  PubMed  Google Scholar 

  86. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short chain fatty acids, regulate colonic treg cell homeostasis. Science (New York, N.Y.). 2013;341:https://doi.org/10.1126/science.1241165

  87. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome biology. 2012;13:R79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wright SD, Burton C, Hernandez M, Hassing H, Montenegro J, Mundt S, et al. Infectious agents are not necessary for murine atherogenesis. The Journal of experimental medicine. 2000;191:1437–1442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–1584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. The Journal of biological chemistry. 2015;290:5647–5660

    Article  PubMed  CAS  Google Scholar 

  92. Ghosh SS, Bie J, Wang J, Ghosh S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in ldlr−/− mice—role of intestinal permeability and macrophage activation. PLoS One. 2014;9:e108577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Cason CA, Dolan KT, Sharma G, Tao M, Kulkarni R, Helenowski IB, et al. Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and post-operative outcomes. J Vasc Surg. 2017

Download references

Funding

This work was funded in part by T32HL094293 (to E.C. and C.C.); Abbott Fund (to E.C.); K08HL130601 (to K.H.) from the National Heart, Lung, and Blood Institute; American College of Surgeons/Society of Vascular Surgery (to K.H.); Vascular Cures (to K.H.); and National Institute of Justice award 2017-MU-MU-0042 (to J.A.G.)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, acquisition, and analysis of data; drafting and critical revision of the manuscript; gave final approval to the manuscript; and accept accountability for all aspects of the work.

Corresponding author

Correspondence to Karen J. Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, E.B., Cason, C., Gilbert, J.A. et al. Current State of Knowledge on Implications of Gut Microbiome for Surgical Conditions. J Gastrointest Surg 22, 1112–1123 (2018). https://doi.org/10.1007/s11605-018-3755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-018-3755-4

Keywords

Navigation