Exosomes in Pancreatic Cancer: from Early Detection to Treatment

  • Emily A. Armstrong
  • Eliza W. Beal
  • Jeffery Chakedis
  • Anghela Z. Paredes
  • Demetrios Moris
  • Timothy M. Pawlik
  • Carl R. Schmidt
  • Mary E. Dillhoff
Review Article
  • 132 Downloads

Abstract

Background

Pancreatic cancer (PC) remains one of the most fatal forms of cancer worldwide with incidence nearly equal to mortality. This is often attributed to the fact that diagnosis is often not made until later disease stages when treatment proves difficult. Efforts have been made to reduce the mortality of PC through improvements in early screening techniques and treatments of late-stage disease. Exosomes, small extracellular vesicles involved in cellular communication, have shown promise in helping understand PC disease biology.

Methods

In this review, we discuss current studies of the role of exosomes in PC physiology, and their potential use as diagnostic and treatment tools.

Results

Exosomes have a role in diagnosing pancreatic cancer and in understanding tumor biology including migration, proliferation, chemoresistance, immunosuppression, cachexia and diabetes, and have a potential role in therapy for pancreatic cancer.

Conclusions

Exosomal analysis is beneficial in demonstrating mechanisms behind PC growth and metastasis, immunosuppression, drug resistance, and paraneoplastic conditions. Furthermore, the use of exosomes can be beneficial in detecting early-stage PC and exosomes have potential applications as therapeutic targets.

Keywords

Exosomes Pancreatic cancer Early detection of cancer 

Abbreviations

AM

Adrenomedullin

ABCG2

ATP-binding cassette sub-family G member 2

Ca 19-9

Carbohydrate antigen 19-9

CAF

Cancer-associated fibroblast cells

cfDNA

Cell-free deoxyribonucleic acid

cfRNA

Cell-free ribonucleic acid

DCs

Dendritic cells

DNA

Deoxyribonucleic acid

EVs

Extracellular vesicles

FDA

Federal Drug Administration

GIPC

GAIP-interacting protein C terminus

GEM

Gemcitabine

hStCs

Hepatic stellate cells

IL-12

Interleukin-12

IPMN

Intraductal papillary mucinous neoplasm

MHC

Major histocompatibility complex

MIF

Macrophage inhibitory factor

miRNA

Microribonucleic acid

NK

Natural killer

PC

Pancreatic cancer

PCIC

Pancreatic cancer-initiating cell

PDAC

Pancreatic ductal adenocarcinoma

PSCs

Pancreatic stellate cells

RFXAP

Regulatory factor X-associated protein

RNA

Ribonucleic acid

UPR

Unfolded protein response

TAMs

Tumor-associated macrophages

TLR-4

Toll-like receptor-4

TNF-α

Tumor necrosis factor-alpha

TGF-β

Tumor growth factor-beta

Notes

Authorship

Emily Armstrong, Eliza Beal, Jeffery Chakedis, Anghela Paredes, Demetrios Moris, Timothy Pawlik, Carl Schmidt, and Mary Dillhoff conceived the idea for the project. Eliza Beal and Emily Armstrong performed the literature review. Emily Armstrong, Eliza Beal, Jeffery Chakedis, Anghela Paredes, Demetrios Moris, Timothy Pawlik, Carl Schmidt, and Mary Dillhoff prepared the manuscript, provided critical review and revision, approved the final version to be submitted, and agree to be accountable for all aspects of the work.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.  https://doi.org/10.3322/caac.21387.CrossRefPubMedGoogle Scholar
  2. 2.
    Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet. 2016;388(10039):73–85.  https://doi.org/10.1016/S0140-6736(16)00141-0.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhou B, Xu JW, Cheng YG, Gao JY, Hu SY, Wang L et al. Early detection of pancreatic cancer: Where are we now and where are we going? Int J Cancer. 2017;141(2):231–41.  https://doi.org/10.1002/ijc.30670.CrossRefPubMedGoogle Scholar
  4. 4.
    Chiorean EG, Coveler AL. Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des Devel Ther. 2015;9:3529–45.  https://doi.org/10.2147/DDDT.S60328.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Oberstein PE, Olive KP. Pancreatic cancer: why is it so hard to treat? Therap Adv Gastroenterol. 2013;6(4):321–37.  https://doi.org/10.1177/1756283X13478680.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2007;6(4):1186–97.  https://doi.org/10.1158/1535-7163.MCT-06-0686.CrossRefPubMedGoogle Scholar
  7. 7.
    Komar G, Kauhanen S, Liukko K, Seppänen M, Kajander S, Ovaska J et al. Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res. 2009;15(17):5511–7.  https://doi.org/10.1158/1078-0432.CCR-09-0414.CrossRefPubMedGoogle Scholar
  8. 8.
    Bergquist JR, Puig CA, Shubert CR, Groeschl RT, Habermann EB, Kendrick ML et al. Carbohydrate Antigen 19-9 Elevation in Anatomically Resectable, Early Stage Pancreatic Cancer Is Independently Associated with Decreased Overall Survival and an Indication for Neoadjuvant Therapy: A National Cancer Database Study. J Am Coll Surg. 2016;223(1):52–65.  https://doi.org/10.1016/j.jamcollsurg.2016.02.009.CrossRefPubMedGoogle Scholar
  9. 9.
    Gold B, Cankovic M, Furtado LV, Meier F, Gocke CD. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J Mol Diagn. 2015;17(3):209–24.  https://doi.org/10.1016/j.jmoldx.2015.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904.  https://doi.org/10.1158/1078-0432.CCR-04-0378.CrossRefPubMedGoogle Scholar
  11. 11.
    Sikora K, Bedin C, Vicentini C, Malpeli G, D’Angelo E, Sperandio N et al. Evaluation of cell-free DNA as a biomarker for pancreatic malignancies. Int J Biol Markers. 2015;30(1):e136–41.  https://doi.org/10.5301/jbm.5000088. CrossRefPubMedGoogle Scholar
  12. 12.
    Kishikawa T, Otsuka M, Ohno M, Yoshikawa T, Takata A, Koike K. Circulating RNAs as new biomarkers for detecting pancreatic cancer. World J Gastroenterol. 2015;21(28):8527–40.  https://doi.org/10.3748/wjg.v21.i28.8527.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11(3):145–56.  https://doi.org/10.1038/nrclinonc.2014.5.CrossRefPubMedGoogle Scholar
  14. 14.
    Di Leva G, Croce CM. miRNA profiling of cancer. Curr Opin Genet Dev. 2013;23(1):3–11.  https://doi.org/10.1016/j.gde.2013.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ballehaninna UK, Chamberlain RS. Biomarkers for pancreatic cancer: promising new markers and options beyond CA 19-9. Tumour Biol. 2013;34(6):3279–92.  https://doi.org/10.1007/s13277-013-1033-3.CrossRefPubMedGoogle Scholar
  16. 16.
    Wu L, Qu X. Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev. 2015;44(10):2963–97.  https://doi.org/10.1039/c4cs00370e.CrossRefPubMedGoogle Scholar
  17. 17.
    Shao Y, Shen Y, Chen T, Xu F, Chen X, Zheng S. The functions and clinical applications of tumor-derived exosomes. Oncotarget. 2016;7(37):60736–51.  https://doi.org/10.18632/oncotarget.11177. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lin J, Li J, Huang B, Liu J, Chen X, Chen XM et al. Exosomes: novel biomarkers for clinical diagnosis. ScientificWorldJournal. 2015;2015:657086.  https://doi.org/10.1155/2015/657086.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Schey KL, Luther JM, Rose KL. Proteomics characterization of exosome cargo. Methods. 2015;87:75–82.  https://doi.org/10.1016/j.ymeth.2015.03.018.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164(6):1226–32.  https://doi.org/10.1016/j.cell.2016.01.043.CrossRefPubMedGoogle Scholar
  21. 21.
    Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83.  https://doi.org/10.1586/epr.09.17.CrossRefPubMedGoogle Scholar
  22. 22.
    Fong ZV, Winter JM. Biomarkers in pancreatic cancer: diagnostic, prognostic, and predictive. Cancer J. 2012;18(6):530–8.  https://doi.org/10.1097/PPO.0b013e31827654ea.CrossRefPubMedGoogle Scholar
  23. 23.
    Herreros-Villanueva M, Bujanda L. Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have. Ann Transl Med. 2016;4(7):134.  https://doi.org/10.21037/atm.2016.03.44.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chari ST, Kelly K, Hollingsworth MA, Thayer SP, Ahlquist DA, Andersen DK et al. Early detection of sporadic pancreatic cancer: summative review. Pancreas. 2015;44(5):693–712.  https://doi.org/10.1097/MPA.0000000000000368.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zeringer E, Li M, Barta T, Schageman J, Pedersen KW, Neurauter A et al. Methods for the extraction and RNA profiling of exosomes. World J Methodol. 2013;3(1):11–8.  https://doi.org/10.5662/wjm.v3.i1.11.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ayars M, Goggins M. Pancreatic cancer: Classifying pancreatic cancer using gene expression profiling. Nat Rev Gastroenterol Hepatol. 2015;12(11):613–4.  https://doi.org/10.1038/nrgastro.2015.180.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Caradec J, Kharmate G, Hosseini-Beheshti E, Adomat H, Gleave M, Guns E. Reproducibility and efficiency of serum-derived exosome extraction methods. Clin Biochem. 2014;47(13–14):1286–92.  https://doi.org/10.1016/j.clinbiochem.2014.06.011.CrossRefPubMedGoogle Scholar
  28. 28.
    Dreyer F, Baur A. Biogenesis and Functions of Exosomes and Extracellular Vesicles. Methods Mol Biol. 2016;1448:201–16.  https://doi.org/10.1007/978-1-4939-3753-0_15.CrossRefPubMedGoogle Scholar
  29. 29.
    Atay S, Godwin AK. Tumor-derived exosomes: A message delivery system for tumor progression. Commun Integr Biol. 2014;7(1):e28231.  https://doi.org/10.4161/cib.28231.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol. 2015;1295:179–209.  https://doi.org/10.1007/978-1-4939-2550-6_15.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang J, Yao Y, Wu J, Li G. Identification and analysis of exosomes secreted from macrophages extracted by different methods. Int J Clin Exp Pathol. 2015;8(6):6135–42.PubMedPubMedCentralGoogle Scholar
  32. 32.
    McDonald MK, Tian Y, Qureshi RA, Gormley M, Ertel A, Gao R et al. Functional significance of macrophage-derived exosomes in inflammation and pain. Pain. 2014;155(8):1527–39.  https://doi.org/10.1016/j.pain.2014.04.029. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kapustin AN, Shanahan CM. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J Physiol. 2016;594(11):2905–14.  https://doi.org/10.1113/JP271340.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One. 2013;8(3):e58502.  https://doi.org/10.1371/journal.pone.0058502.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wu CY, Du SL, Zhang J, Liang AL, Liu YJ. Exosomes and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Cancer Gene Ther. 2017;24(1):6–12.  https://doi.org/10.1038/cgt.2016.69.CrossRefPubMedGoogle Scholar
  36. 36.
    Cazzoli R, Buttitta F, Di Nicola M, Malatesta S, Marchetti A, Rom WN et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol. 2013;8(9):1156–62.  https://doi.org/10.1097/JTO.0b013e318299ac32.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 2014;9(4):e92921.  https://doi.org/10.1371/journal.pone.0092921.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Moris D, Beal EW, Chakedis J, Burkhart RA, Schmidt C, Dillhoff M et al. Role of exosomes in treatment of hepatocellular carcinoma. Surg Oncol. 2017;26(3):219–28.  https://doi.org/10.1016/j.suronc.2017.04.005.CrossRefPubMedGoogle Scholar
  39. 39.
    André MoR, Pedro A, Lyden D. Cancer Exosomes as Mediators of Drug Resistance. Methods Mol Biol. 2016;1395:229–39.  https://doi.org/10.1007/978-1-4939-3347-1_13.CrossRefGoogle Scholar
  40. 40.
    Jin H, Wu Y, Tan X. The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers. Clin Transl Oncol. 2017;19(8):921–30.  https://doi.org/10.1007/s12094-017-1625-2.CrossRefPubMedGoogle Scholar
  41. 41.
    Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015;77:13–27.  https://doi.org/10.1146/annurev-physiol-021014-071641.CrossRefPubMedGoogle Scholar
  42. 42.
    Masyuk AI, Masyuk TV, Larusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59(3):621–5.  https://doi.org/10.1016/j.jhep.2013.03.028.CrossRefPubMedGoogle Scholar
  43. 43.
    Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget. 2015;6(35):37043–53.  https://doi.org/10.18632/oncotarget.6158. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rekker K, Saare M, Roost AM, Kubo AL, Zarovni N, Chiesi A et al. Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem. 2014;47(1–2):135–8.  https://doi.org/10.1016/j.clinbiochem.2013.10.020.CrossRefPubMedGoogle Scholar
  45. 45.
    Tjensvoll K, Nordgård O, Smaaland R. Circulating tumor cells in pancreatic cancer patients: methods of detection and clinical implications. Int J Cancer. 2014;134(1):1–8.  https://doi.org/10.1002/ijc.28134.CrossRefPubMedGoogle Scholar
  46. 46.
    Takai E, Totoki Y, Nakamura H, Morizane C, Nara S, Hama N et al. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci Rep. 2015;5:18425.  https://doi.org/10.1038/srep18425.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Poruk KE, Gay DZ, Brown K, Mulvihill JD, Boucher KM, Scaife CL et al. The clinical utility of CA 19-9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr Mol Med. 2013;13(3):340–51.PubMedPubMedCentralGoogle Scholar
  48. 48.
    San Lucas FA, Allenson K, Bernard V, Castillo J, Kim DU, Ellis K et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann Oncol. 2016;27(4):635–41.  https://doi.org/10.1093/annonc/mdv604.CrossRefPubMedGoogle Scholar
  49. 49.
    Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7(3):e30679.  https://doi.org/10.1371/journal.pone.0030679.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Endzeliņš E, Berger A, Melne V, Bajo-Santos C, Soboļevska K, Ābols A et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer. 2017;17(1):730.  https://doi.org/10.1186/s12885-017-3737-z. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nakamura K, Sawada K, Yoshimura A, Kinose Y, Nakatsuka E, Kimura T. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer. 2016;15(1):48.  https://doi.org/10.1186/s12943-016-0536-0. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869–75.  https://doi.org/10.1074/jbc.C113.532267.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yang S, Che SP, Kurywchak P, Tavormina JL, Gansmo LB, Correa de Sampaio P et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther. 2017;18(3):158–65.  https://doi.org/10.1080/15384047.2017.1281499.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Allenson K, Castillo J, San Lucas FA, Scelo G, Kim DU, Bernard V et al. High Prevalence of Mutant KRAS in Circulating Exosome-derived DNA from Early Stage Pancreatic Cancer Patients. Ann Oncol. 2017.  https://doi.org/10.1093/annonc/mdx004.
  55. 55.
    Lorenzon L, Blandino G. Glypican-1 exosomes: do they initiate a new era for early pancreatic cancer diagnosis? Transl Gastroenterol Hepatol. 2016;1:8.  https://doi.org/10.21037/tgh.2016.01.07.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–82.  https://doi.org/10.1038/nature14581.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lai X, Wang M, McElyea SD, Sherman S, House M, Korc M. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017;393:86–93.  https://doi.org/10.1016/j.canlet.2017.02.019. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Que R, Ding G, Chen J, Cao L. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol. 2013;11:219.  https://doi.org/10.1186/1477-7819-11-219.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Machida T, Tomofuji T, Maruyama T, Yoneda T, Ekuni D, Azuma T et al. miR-1246 and miR-4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol Rep. 2016;36(4):2375–81.  https://doi.org/10.3892/or.2016.5021.CrossRefPubMedGoogle Scholar
  60. 60.
    Madhavan B, Yue S, Galli U, Rana S, Gross W, Müller M et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer. 2015;136(11):2616–27.  https://doi.org/10.1002/ijc.29324.CrossRefPubMedGoogle Scholar
  61. 61.
    Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem. 2013;288(37):26888–97.  https://doi.org/10.1074/jbc.M113.452458.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hui L, Chen Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 2015;368(1):7–13.  https://doi.org/10.1016/j.canlet.2015.07.039.CrossRefPubMedGoogle Scholar
  63. 63.
    Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release. 2015;219:278–94.  https://doi.org/10.1016/j.jconrel.2015.06.029.CrossRefPubMedGoogle Scholar
  64. 64.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.  https://doi.org/10.1038/nature15756.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nuzhat Z, Kinhal V, Sharma S, Rice GE, Joshi V, Salomon C. Tumour-derived exosomes as a signature of pancreatic cancer - liquid biopsies as indicators of tumour progression. Oncotarget. 2016.  https://doi.org/10.18632/oncotarget.13973.
  66. 66.
    Patel GK, Patton MC, Singh S, Khushman M, Singh AP. Pancreatic Cancer Exosomes: Shedding Off for a Meaningful Journey. Pancreat Disord Ther. 2016;6(2):e148.  https://doi.org/10.4172/2165-7092.1000e148.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Harada T, Yamamoto H, Kishida S, Kishida M, Awada C, Takao T et al. Wnt5b-associated exosomes promote cancer cell migration and proliferation. Cancer Sci. 2017;108(1):42–52.  https://doi.org/10.1111/cas.13109.CrossRefPubMedGoogle Scholar
  68. 68.
    Wang Z, von Au A, Schnölzer M, Hackert T, Zöller M. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells. Oncotarget. 2016;7(34):55409–36.  https://doi.org/10.18632/oncotarget.10580. PubMedPubMedCentralGoogle Scholar
  69. 69.
    Chen D, Wu X, Xia M, Wu F, Ding J, Jiao Y et al. Upregulated exosomic miR-23b-3p plays regulatory roles in the progression of pancreatic cancer. Oncol Rep. 2017;38(4):2182–8.  https://doi.org/10.3892/or.2017.5919.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Takikawa T, Masamune A, Yoshida N, Hamada S, Kogure T, Shimosegawa T. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells. Pancreas. 2017;46(1):19–27.  https://doi.org/10.1097/MPA.0000000000000722.CrossRefPubMedGoogle Scholar
  71. 71.
    Ali S, Suresh R, Banerjee S, Bao B, Xu Z, Wilson J et al. Contribution of microRNAs in understanding the pancreatic tumor microenvironment involving cancer associated stellate and fibroblast cells. Am J Cancer Res. 2015;5(3):1251–64.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Yu Z, Zhao S, Ren L, Wang L, Chen Z, Hoffman RM et al. Pancreatic cancer-derived exosomes promote tumor metastasis and liver pre-metastatic niche formation. Oncotarget. 2017;8(38):63461–83.  https://doi.org/10.18632/oncotarget.18831.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–26.  https://doi.org/10.1038/ncb3169.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Yoneyama H, Takizawa-Hashimoto A, Takeuchi O, Watanabe Y, Atsuda K, Asanuma F et al. Acquired resistance to gemcitabine and cross-resistance in human pancreatic cancer clones. Anticancer Drugs. 2015;26(1):90–100.  https://doi.org/10.1097/CAD.0000000000000165.CrossRefPubMedGoogle Scholar
  75. 75.
    Hu H, Gu Y, Qian Y, Hu B, Zhu C, Wang G et al. DNA-PKcs is important for Akt activation and gemcitabine resistance in PANC-1 pancreatic cancer cells. Biochem Biophys Res Commun. 2014;452(1):106–11.  https://doi.org/10.1016/j.bbrc.2014.08.059.CrossRefPubMedGoogle Scholar
  76. 76.
    Binenbaum Y, Na'ara S, Gil Z. Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat. 2015;23:55–68.  https://doi.org/10.1016/j.drup.2015.10.002.CrossRefPubMedGoogle Scholar
  77. 77.
    Mikamori M, Yamada D, Eguchi H, Hasegawa S, Kishimoto T, Tomimaru Y et al. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Sci Rep. 2017;7:42339.  https://doi.org/10.1038/srep42339.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Patel GK, Khan MA, Bhardwaj A, Srivastava SK, Zubair H, Patton MC et al. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer. 2017;116(5):609–19.  https://doi.org/10.1038/bjc.2017.18.CrossRefPubMedGoogle Scholar
  79. 79.
    Beloribi-Djefaflia S, Siret C, Lombardo D. Exosomal lipids induce human pancreatic tumoral MiaPaCa-2 cells resistance through the CXCR4-SDF-1α signaling axis. Oncoscience. 2015;2(1):15–30.  https://doi.org/10.18632/oncoscience.96. PubMedGoogle Scholar
  80. 80.
    Bhattacharya S, Pal K, Sharma AK, Dutta SK, Lau JS, Yan IK et al. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways. PLoS One. 2014;9(12):e114409.  https://doi.org/10.1371/journal.pone.0114409.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE, Hill R. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 2017;36(13):1770–8.  https://doi.org/10.1038/onc.2016.353.CrossRefPubMedGoogle Scholar
  82. 82.
    Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 2013;91(4):431–7.  https://doi.org/10.1007/s00109-013-1020-6.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Chen W, Jiang J, Xia W, Huang J. Tumor-Related Exosomes Contribute to Tumor-Promoting Microenvironment: An Immunological Perspective. J Immunol Res. 2017;2017:1073947.  https://doi.org/10.1155/2017/1073947.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Ding G, Zhou L, Qian Y, Fu M, Chen J, Xiang J et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 2015;6(30):29877–88.  https://doi.org/10.18632/oncotarget.4924. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol. 2014;292(1–2):65–9.  https://doi.org/10.1016/j.cellimm.2014.09.004.CrossRefPubMedGoogle Scholar
  86. 86.
    Que RS, Lin C, Ding GP, Wu ZR, Cao LP. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. J Zhejiang Univ Sci B. 2016;17(5):352–60.  https://doi.org/10.1631/jzus.B1500305.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Katsiougiannis S, Chia D, Kim Y, Singh RP, Wong DT. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity. FASEB J. 2017;31(3):998–1010.  https://doi.org/10.1096/fj.201600984R.CrossRefPubMedGoogle Scholar
  88. 88.
    Javeed N, Sagar G, Dutta SK, Smyrk TC, Lau JS, Bhattacharya S et al. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction. Clin Cancer Res. 2015;21(7):1722–33.  https://doi.org/10.1158/1078-0432.CCR-14-2022.CrossRefPubMedGoogle Scholar
  89. 89.
    Sagar G, Sah RP, Javeed N, Dutta SK, Smyrk TC, Lau JS et al. Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut. 2016;65(7):1165–74.  https://doi.org/10.1136/gutjnl-2014-308350.CrossRefPubMedGoogle Scholar
  90. 90.
    Wang L, Zhang B, Zheng W, Kang M, Chen Q, Qin W et al. Exosomes derived from pancreatic cancer cells induce insulin resistance in C2C12 myotube cells through the PI3K/Akt/FoxO1 pathway. Sci Rep. 2017;7(1):5384.  https://doi.org/10.1038/s41598-017-05541-4. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kim SM, Kim HS. Engineering of extracellular vesicles as drug delivery vehicles. Stem Cell Investig. 2017;4:74.  https://doi.org/10.21037/sci.2017.08.07.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release. 2015;207:18–30.  https://doi.org/10.1016/j.jconrel.2015.03.033.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Tan A, Rajadas J, Seifalian AM. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev. 2013;65(3):357–67.  https://doi.org/10.1016/j.addr.2012.06.014.CrossRefPubMedGoogle Scholar
  94. 94.
    Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–90.  https://doi.org/10.1016/j.biomaterials.2013.11.083.CrossRefPubMedGoogle Scholar
  95. 95.
    Tang K, Zhang Y, Zhang H, Xu P, Liu J, Ma J et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun. 2012;3:1282.  https://doi.org/10.1038/ncomms2282.CrossRefPubMedGoogle Scholar
  96. 96.
    Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015;219:396–405.  https://doi.org/10.1016/j.jconrel.2015.07.030.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Wang M, Altinoglu S, Takeda YS, Xu Q. Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery. PLoS One. 2015;10(11):e0141860.  https://doi.org/10.1371/journal.pone.0141860.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Su MJ, Aldawsari H, Amiji M. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems. Sci Rep. 2016;6:30110.  https://doi.org/10.1038/srep30110.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Mahmoodzadeh Hosseini H, Ali Imani Fooladi A, Soleimanirad J, Reza Nourani M, Mahdavi M. Exosome/staphylococcal enterotoxin B, an anti tumor compound against pancreatic cancer. J BUON. 2014;19(2):440–8.PubMedGoogle Scholar
  100. 100.
    Aspe JR, Diaz Osterman CJ, Jutzy JM, Deshields S, Whang S, Wall NR. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles. 2014;3.  https://doi.org/10.3402/jev.v3.23244.
  101. 101.
    Mrizak D, Martin N, Barjon C, Jimenez-Pailhes AS, Mustapha R, Niki T et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Inst. 2015;107(1):363.  https://doi.org/10.1093/jnci/dju363.CrossRefPubMedGoogle Scholar
  102. 102.
    Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013;41(1):245–51.  https://doi.org/10.1042/BST20120265.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Taller D, Richards K, Slouka Z, Senapati S, Hill R, Go DB et al. On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis. Lab Chip. 2015;15(7):1656–66.  https://doi.org/10.1039/c5lc00036j.CrossRefPubMedGoogle Scholar

Copyright information

© The Society for Surgery of the Alimentary Tract 2018

Authors and Affiliations

  • Emily A. Armstrong
    • 1
  • Eliza W. Beal
    • 2
  • Jeffery Chakedis
    • 2
  • Anghela Z. Paredes
    • 2
  • Demetrios Moris
    • 2
  • Timothy M. Pawlik
    • 2
  • Carl R. Schmidt
    • 2
  • Mary E. Dillhoff
    • 2
  1. 1.The Ohio State University College of MedicineColumbusUSA
  2. 2.Department of Surgery, Division of Surgical OncologyThe Ohio State University Wexner Medical CenterColumbusUSA

Personalised recommendations