Skip to main content
Log in

Automatic spectral imaging protocol selection combined with iterative reconstruction can enhance image quality and decrease radiation and contrast dosage in abdominal CT angiography

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) technology in reducing radiation and contrast dosage.

Methods

Sixty-four patients were randomly divided into two groups for abdominal computed tomography (CT): the experiment group with ASIS plus 50% ASIR and the control with 120 kVp voltage.

Results

The CT dose-index volume decreased by 23.68 and 23.57% and the dose-length product dropped by 25.59 and 18.45% in the arterial and portal venous phases, respectively, in the experiment than control group. The contrast dose was reduced by 16.86% in the experiment group. In the 55 keV + 50% ASIR group, the arterial contrast-to-noise ratio and scores were significantly (P < 0.05) higher than in the control group in the arterial phase while the portal contrast-to-noise ratio and scores were not significantly different between the two groups (P > 0.05).

Conclusion

The ASIS technique plus 50% ASIR can enhance image quality of the abdominal structures while decreasing the radiation and contrast dosage compared with the conventional scan mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASIS:

Automatic spectral imaging protocol selection

ASIR:

Adaptive statistical iterative reconstruction

CT:

Computed tomography

BMI:

Body mass index

SNR:

Signal-to-noise ratio

ROI:

Region of interest

ROIo:

CT value in the liver parenchyma or vessels

ROId:

CT value in the sacrospinal muscle

SDn:

Mean background image noise

SD:

Standard deviation

CTDIv:

CT dose index volume

DLP:

Dose-length product

ALARA:

As low as reasonably achievable

References

  1. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  3. Kennedy TC, Miller Y, Prindiville S. Screening for lung cancer revised and the role of sputum cytology and fluorescence bronchoscopy in high risk group. Chest. 2000;117(4suppl1):72–9.

    Article  Google Scholar 

  4. Limbruno U, Picchi A, Micheli A, et al. Refining the assessment of contrast-induced acute kidney injury: the load-to-damage relationship. J Cardiovasc Med (Hagerstown). 2014;15(7):587–94.

    Article  CAS  Google Scholar 

  5. Moore A, Dickerson E, Dillman JR, et al. Incidence of nonconfounded post-computed tomography acute kidney injury in hospitalized patients with stable renal function receiving intravenous iodinated contrast material. Curr Probl Diagn Radiol. 2014;43(5):237–41.

    Article  PubMed  Google Scholar 

  6. Newhouse JH, Roy Choudhury A. Quantitating contrast medium-induced nephropathy: controlling the controls. Radiology. 2013;267(1):4–8.

    Article  PubMed  Google Scholar 

  7. Korn A, Fenchel M, Bender B, et al. Iterative Reconstruction in head CT: image quality of routine and low-dose protocols in comparison with standard filtered back-projection. Am J Neuroradiol. 2012;33(2):218–24.

    Article  CAS  PubMed  Google Scholar 

  8. Pontana F, Pagniez J, Flohr T, et al. Chest computed tomography using iterative reconstruction vs filtered back projection (part 1): evaluation of image noise reduction in 32 patients. Eur Radiol. 2011;21(3):627–35.

    Article  PubMed  Google Scholar 

  9. Singh S, Kalra MK, Gilman MD, et al. Adapteve statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology. 2011;259(2):565–73.

    Article  PubMed  Google Scholar 

  10. Zhao L, Winklhofer S, Yang Z, et al. Optimal adaptive statistical iterative reconstruction percentage in dual-energy monochromatic CT portal venography. Acad Radiol. 2016;23(3):337–43.

    Article  PubMed  Google Scholar 

  11. Chen CM, Chu SY, Hsu MY, et al. Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose. Eur Radiol. 2014;24(2):460–8.

    Article  PubMed  Google Scholar 

  12. Zhang C, Yu Y, Zhang Z, et al. Imaging quality evaluation of low tube voltage coronary CT angiography using low concentration contrast medium. PLoS One. 2015;10(3):e0120539.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Delesalle MA, Pontana F, Duhamel A. etal Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source dual-energy CT. Radiology. 2013;267(1):256–66.

    Article  PubMed  Google Scholar 

  14. He J, Wang Q, Ma X, et al. Dual-energy CT angiography of abdomen with routine concentration contrast agent in comparison with conventional single-energy CT with high concentration contrast agent. Eur J Radiol. 2015;84(2):221–7.

    Article  PubMed  Google Scholar 

  15. Zhu Z, Zhao XM, Zhao YF, et al. Feasibility study of using gemstone spectral imaging (GSI) and adaptive statistical iterative reconstruction (ASIR) for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values. PLoS One. 2015;10(6):e0129201.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lv P, Lin XZ, Chen K, et al. Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol. 2012;22(10):2117–24.

    Article  PubMed  Google Scholar 

  17. Lv P, Lin XZ, Li J, et al. Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method. Radiology. 2011;259(3):720–9.

    Article  PubMed  Google Scholar 

  18. Yu Y, Guo L, Hu C, et al. Spectral CT imaging in the differential diagnosis of necrotic hepatocellular carcinoma and hepatic abscess. Clin Radiol. 2014;69(12):e517–24.

    Article  CAS  PubMed  Google Scholar 

  19. Yu Y, Lin X, Chen K, et al. Hepatocellular carcinoma and focal nodular hyperplasia of the liver: differentiation with CT spectral imaging. Eur Radiol. 2013;23(6):1660–8.

    Article  PubMed  Google Scholar 

  20. Lin XZ, Wu ZY, Tao R, et al. Dual energy spectral CT imaging of insulinoma-value in preoperative diagnosis compared with conventional multi-detector CT. Eur J Radiol. 2012;81(10):2487–94.

    Article  PubMed  Google Scholar 

  21. Lv P, Liu J, Chai Y, et al. Automatic spectral imaging protlcol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience. Eur Radiol. 2016;27(1):374–83.

    Article  PubMed  Google Scholar 

  22. Lee CI, Haims AH, Monico EP, et al. Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology. 2004;231(2):393–8.

    Article  PubMed  Google Scholar 

  23. Chen A, Liu A, Tian S, et al. Optimal monochromatic images of abdominal arteries with low concentrations of contrast agents in spectral computed tomography imaging. Zhonghua Yi Xue Za Zhi. 2014;94(43):3382–6.

    PubMed  Google Scholar 

  24. He J, Ma X, Wang Q, et al. Spectral CT demonstration of the superior mesenteric artery: comparison of monochromatic and polychromatic imaging. Acad Radiol. 2014;21(3):364–8.

    Article  PubMed  Google Scholar 

  25. Zhao LQ, He W, Li JY, et al. Improving image quality in portal venography with spectral CT imaging. Eur J Radiol. 2012;81(8):1677–81.

    Article  PubMed  Google Scholar 

  26. He J, Wang Q, Ma X, et al. Dual-energy CT angiography of abdpmen with routine concentration contrast agent in comparison with conventional single-energy CT with high concentration contrast agent. Eur J Radiol. 2015;84(2):221–7.

    Article  PubMed  Google Scholar 

  27. Chen A, Liu A, Tian S, et al. Optimal monochromatic images of abdominal arteries with low concentrations of contrast agents in spectral computed tomography imaging. Zhonghua Yi Xue Za Zhi. 2014;94(43):3382–6.

    PubMed  Google Scholar 

  28. Yeh BM, Shepherd JA, Wang ZJ, et al. Dual-energy and low-CT in the abdomen. AJR Am J Roentgenol. 2009;193(1):47–54.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yamada Y, Jinzaki M, Hosokawa T, et al. AbdominalCT: an intra-individual comparison between virtual monochromatic spectral and polychromatic 120-kVp images obtained during the same examination. Eur J Radiol. 2014;83(10):1715–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bu-Lang Gao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, XP., Gao, BL., Li, CY. et al. Automatic spectral imaging protocol selection combined with iterative reconstruction can enhance image quality and decrease radiation and contrast dosage in abdominal CT angiography. Jpn J Radiol 36, 345–350 (2018). https://doi.org/10.1007/s11604-018-0734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-018-0734-3

Keywords

Navigation