Entropy of earthquakes: application to Vrancea earthquakes

Abstract

The entropy of earthquakes is derived by using the Gutenberg–Richter statistical distributions. Both canonical and microcanonical earthquake distributions are given, and Einstein’s fluctuation formula is deduced for earthquakes. The seismic activity of Vrancea in the period 1980–2019 is analyzed, for earthquakes with magnitude greater than two, and the results are compared with the theoretical results. It is shown that the parameter of the magnitude distribution exhibits a tendency of increasing with time, due to the accumulation of small-magnitude earthquakes, interrupted from time to time by ruptures towards smaller values, caused by earthquakes with greater magnitudes. These variations do not obey the normal distribution of the fluctuations. The (small) time variations of the distribution parameter provide a measure of the departure of the seismic activity from an equilibrium process. For Vrancea, these deviations are very small (up to 1% per year).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions, with formulas, graphs and mathematical tables. National Bureau of Standards, Applied Mathematics Series #55, Washington, DC, p 806

  2. Apostol BF (2020) Bath’s law, correlations and magnitude distributions. arXiv:2006.07591v1 [physics.geo-ph], 13 June

  3. Apostol BF (2006a) A model of seismic focus and related statistical distributions of earthquakes. Rom Reps Phys 58:583–600

    Google Scholar 

  4. Apostol BF (2006b) Model of seismic focus and related statistical distributions of earthquakes. Phys Lett A 357:462–466

    Article  Google Scholar 

  5. Apostol BF (2019a) An inverse problem in seismology: derivation of the seismic source parameters from P an S seismic waves. J Seismol 23:1017–1030

    Article  Google Scholar 

  6. Apostol BF (2019b) Statistical seismology, internal report. Institute of Earth’s Physics, Magurele

    Google Scholar 

  7. Berrill JB, Davis RO (1980) Maximum entropy and the magnitude distribution. Bull Seismol Soc Am 70:1823–1831

    Google Scholar 

  8. Bullen KE (1963) An introduction to the theory of seismology. Cambridge University Press, London

    Google Scholar 

  9. Console R, Lombardi AM, Murru M, Rhoades D (2003) Bath’s law and the self-similarity of earthquakes. J Geophys Res 108:2128. https://doi.org/10.1029/2001JB001651

    Article  Google Scholar 

  10. De Santis A, Cianchini G, Favali P, Beranzoli L, Boschi E (2011) The Gutenberg–Richter law and entropy of earthquakes: two case studies in Central Italy. Bull Sesimol Soc Am 101:1386–1395

    Article  Google Scholar 

  11. De Santis A, Abbattista C, Alfonsi L, Amoruso L, Campuzano SA, Carbone M, Cesaroni C, Cianchini G, De Franceschi G, De Santis A, Di Giovambattista R, Marchetti D, Martino L, Perrone L, Piscini A, Rainone ML, Soldani M, Spogli L, Santoro F (2019) Geosystemics view of earthquakes. Entropy 21:412. https://doi.org/10.3390/e21040412

    Article  Google Scholar 

  12. Dong WM, Bao AB, Shah HC (1984) Use of maximum entropy principle in earthquake recurrence relationships. Bull Seismol Soc Am 74:725–737

    Google Scholar 

  13. Einstein A (1909) Zum gegenwaertigen Stand des Strahlungsproblem. Phys Z 10:185–193

    Google Scholar 

  14. Gibbs JW (1902) Elementary principles in statistical mechanics. Scribner’s sons, New York

    Google Scholar 

  15. Gulia L, Wiemer S (2019) Real-time discrimination of earthquake foreshocks and aftershocks. Nature 574:193–199

    Article  Google Scholar 

  16. Gutenberg B, Richter C (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  17. Gutenberg B, Richter C (1956) Magnitude and energy of earthquakes. Ann Geofis 9: 1–15 ((2010) Ann Geophys 53:7–12)

  18. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  19. Kanamori H (1977) The energy release in earthquakes. J Geophys Res 82:2981–2987

    Article  Google Scholar 

  20. Kisslinger C (1996) Aftershocks and fault-zone properties. Adv Geophys 38:1–36

    Article  Google Scholar 

  21. Landau L, Lifshitz E (1980) Statistical physics, course of theoretical physics, vol 5. Elsevier, Oxford

    Google Scholar 

  22. Lay T, Wallace TC (1995) Modern global seismology. Academic Press, San Diego

    Google Scholar 

  23. Lombardi AM (2002) Probability interpretation of “Bath’s law”. Ann Geophys 45:455–472

    Google Scholar 

  24. Main I, Al-Kindy F (2002) Entropy, energy and proximity to criticality in global earthquake populations. Geophys Res Lett. https://doi.org/10.1029/2001GL014078

    Article  Google Scholar 

  25. Main I, Burton PW (1984) Information theory and the earthquake frequency-magnitude distribution. Bull Seismol Soc Am 74:1409–1426

    Google Scholar 

  26. Marzocchi W, Sandri L (2003) A review and new insights on the estimation of the \(b\)-value and its uncertainty. Ann Geophys 46:1271–1282

    Google Scholar 

  27. Masinha L, Shen PY (1987) On the magnitude entropy of earthquakes. Tectonophysics 138:115–119

    Article  Google Scholar 

  28. Nicholson T, Sambridge M, Gudmundsson O (2000) On entropy and clustering in earthquake hypocentre distributions. Geophys J Int 142:37–51

    Article  Google Scholar 

  29. Ranalli G (1969) A statistical study of aftershock sequences. Ann Geofis 22:359–397

    Google Scholar 

  30. Richter CF (1958) Elementary seismology. Freeman, San Francisco

    Google Scholar 

  31. Romanian Earthquake Catalogue (ROMPLUS Catalog), National Institute for Earth Physics, Romania (2018) (updated)

  32. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–666

    Article  Google Scholar 

  33. Shen PY, Mansinha L (1983) On the principle of maximum entropy and the earthquake frequency-magnitude relation. Geophys J R Astr Soc 74:777–785

    Google Scholar 

  34. Stein S, Wysession M (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell, New York

    Google Scholar 

  35. Udias A (1999) Principles of seismology. Cambridge University Press, New York

    Google Scholar 

  36. Utsu T (1969) Aftershocks and earthquake statistics (I, II): Source parameters which characterize an aftershock sequence and their interrelations. J Fac Sci Hokkaido Univ Ser VII 3:129–195

    Google Scholar 

  37. Utsu T, Seki A (1955) A relation between the area of aftershock region and the energy of the mainshock. J Seismol Soc Jpn 7:233 (in Japanese)

    Google Scholar 

  38. Wiener N (1948) Cybernetics. MIT Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to the colleagues in the Institute of Earth’s Physics, Magurele-Bucharest, for many enlightening discussions, and to the anonymous Reviewers for thoughtful suggestions. This work was partially carried out within the Program Nucleu 2019, funded by Romanian Ministry of Research and Innovation, Research Grant #PN19-08-01-02/2019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. F. Apostol.

Additional information

Communicated by Ramon Zuñiga, Ph.D. (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Apostol, B.F., Cune, L.C. Entropy of earthquakes: application to Vrancea earthquakes. Acta Geophys. (2021). https://doi.org/10.1007/s11600-021-00550-4

Download citation

Keywords

  • Earthquake entropy
  • Fluctuation distribution
  • Vrancea earthquakes