Seismicity analysis of selected faults in Makran Southern Pakistan

Abstract

This study was focused on evaluation of seismicity yield of key faults guarding the terrestrial Makran region (Balochistan and Iran) using updated datasets. The Makran onshore region is bounded by paramount strike-slip faults (Chaman fault, Ghazaband fault, Ornach-Nal fault and Minab fault). We have compiled the earthquake’s catalog and performed iterative processes for declustering of independent main shocks, estimation of magnitude completeness and b-values. The main shocks of disastrous earthquakes, e.g., Mw 7.7 Quetta (1935) and Mw 7.7 Awaran (2013), have epicenters along the Ghazaband fault and splay of Chaman fault, respectively. The earthquake source parameters such as moment magnitude, focal depth, focal mechanism, and epicenter location was utilized in mapping and seismicity evaluation of the faults. The focal mechanism solution was derived to determine the fault mechanics in generating the Mw > 5.0 events along these faults. This study helped us to compare the seismological profiles of each boundary fault and present the seismological information including the characteristics of events on/along fault, estimation of re-occurrence period, corresponding b-value, and hazard potential of the of the key faults. Since our study is based on recent dataset, i.e., inclusion of 2013 Mw 7.7 Awaran earthquake, the estimated results could help in better planning against the earthquake hazard in near-field cities & coastal towns of southern Pakistan.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahmed S, Hassan S, Mehnood K, Maqsood T (2018) Role of Chaman transform boundary fault in the deformation of Eastern Kharan fore-arc basin. J Himal Earth Sci 51:75–98

    Google Scholar 

  2. Ali M, Khan MJ (2014) Invisible fault lines ruin the development of urbanization. In: Proceedings of 1st international conference on infrastructure, management, assessment and rehabilitation techniques (ICIMART’14). American University of Sharjah

  3. Ali M, Khan MJ (2015) GIS based study on seismicity of Makran over 100 years. Int J Econ Environ Geol 6(2):11–16

    Google Scholar 

  4. Altamimi Z, Métivier L, Collilieux X (2011) ITRF 2008 plate motion model. Geophys Res Abstr 13, EGU 2011–4750

  5. Ambraseys N, Bilham R (2003a) Earthquakes and associated deformation in North Baluchistan 1892–2001. Bull Seismol Soc Am 93(4):1573–1605

    Article  Google Scholar 

  6. Ambraseys N, Bilham R (2003b) Earthquakes in Afghanistan. Seismol Res Lett 74(2):107–123

    Article  Google Scholar 

  7. Ambraseys N, Bilham R (2014) The tectonic setting of Bamiyan and seismicity in and near Afghanistan for the past twelve centuries. After the destruction of Giant Buddha statues in Bamiyan (Afghanistan) in 2001. Springer, Berlin, pp 101–152

    Google Scholar 

  8. Babur ZM (1912) The Babur-Nama in english translated by A S. Beveredge. Steven Austin, Hertford

    Google Scholar 

  9. Barnhart WD, Lohman RB, Mellors RJ (2013) Active accommodation of plate convergence in Southern Iran: earthquake locations, triggered aseismic slip, and regional strain rates. J Geophys Res Solid Earth 118(10):5699–5711. https://doi.org/10.1002/jgrb.50380

    Article  Google Scholar 

  10. Barnhart W, Hayes G, Briggs R, Gold R, Bilham R (2014) Ball-and-socket tectonic rotation during the 2013 Mw 7.7 Balochistan Earthquake. Earth Planet Sci Lett 403:210–216

    Article  Google Scholar 

  11. Bilham R,  Lodi S, Hough S, Bukhary S, Khan AM, Rafeeqi SFA (2007) Seismic hazard in Karachi, Pakistan: uncertain past, uncertain future. Seismolog Res Lett 78(6):601–613

    Article  Google Scholar 

  12. Burg KP (2018) Geology of the onshore Makran accretionary wedge: synthesis and tectonic interpretation. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2018.09.011

    Article  Google Scholar 

  13. Byrne DE, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone. J Geophys Res 97:449

    Article  Google Scholar 

  14. Crupa WE, Khan SD, Huang J, Khan AS, Kasi A (2017) Active tectonic deformation of the western Indian plate boundary: a case study from the Chaman fault system. J Asian Earth Sci 147:452–468

    Article  Google Scholar 

  15. Dolati A, Burg JP (2013) Preliminary fault analysis and paleostress evolution in the Makran Fold-and-Thrust Belt in Iran. In: Al Hosani K, Roure F, Ellison R, Lokier S (eds) Lithosphere dynamics and sedimentary basins: the Arabian plate and analogues. Springer, Heidelberg, pp 261–277

    Google Scholar 

  16. Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res Solid Earth 86(B4):2825–2852

    Article  Google Scholar 

  17. Ekström G, Nettles M, Dziewoński AM (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200:1–9

    Article  Google Scholar 

  18. Fattahi H, Amelung F (2016) InSAR observations of strain accumulation and fault creep along the Chaman Fault System, Pakistan and Afghanistan. Geophys Res Lett 43:8399–8406

    Article  Google Scholar 

  19. Fattahi H, Amelung F, Chaussard E, Wdowinski S (2015) Coseismic and postseismic deformation due to the 2007 M5.5 Ghazaband fault earthquake, Balochistan. Pakistan. AGU Publications, Washington, pp 3305–3312

    Google Scholar 

  20. Frohling E, Szeliga W (2016) GPS constraints on interplate locking within the Makran subduction zone. Geophys J Int 205(1):67–76

    Article  Google Scholar 

  21. Furuya M, Satyabala S (2008) Slow earthquake in Afghanistan detected by Insar. American Geophysical Union, Washington

    Google Scholar 

  22. Griesbach C (1893) Notes on the earthquake in Balochistan on the 20th December 1892. Geol Surv India 26(2):57–61

    Google Scholar 

  23. Hadi SU, Khan SD, Owen LA, Khan AS, Hedrick AK, Caffee MW (2013) Slip-rates along the Chaman fault: implication for transient strain accumulation and strain partitioning along the western Indian plate margin. Tectonophysics 608(2013):389–400

    Article  Google Scholar 

  24. Hatzfeld D, Molnar P (2010) Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev Geophys 48:RG2005

  25. Hussain J, Butt KA, Pervaiz K (2002) Makran coast: a potential seismic risk belt. Geological Bulletin University, Peshawar, pp 43–56

    Google Scholar 

  26. Kazmi A, Jan Q (1997) Geology and tectonics of Pakistan. Graphic Publishers, Santa Ana

    Google Scholar 

  27. Khan MJ (2015) Integrated study on seismicity of Makran over 100 years. Department of Earth & Environmental Sciences, BUKC. MS Thesis

  28. Khan MA, Bendick R, Ismail Bhat M, Bilham R, Kakar DM, Faisal Khan S, Lodi SH, Sufyan M, Singh B, Szeliga W, Wahab A (2008) Preliminary geodetic constraints on plate boundary deformation on the western edge of the Indian plate from TriGGnet (Tri-University GPS Geodesy Network). J Himal Earth Sci 41:71–87

    Google Scholar 

  29. Khan S, Waseem M, Khan MA, Ahmed W (2018) Updated earthquake catalogue for seismic hazard analysis in Pakistan. J Seismol 22(4):841–861

    Article  Google Scholar 

  30. Kukowski N, Schillhorn T, Huhn K, von Rad U, Husen S, Flueh ER (2001) Morphotectonics and Mechanics of the central Makran accretionary wedge off Pakistan. Mar Geol 173:1–19

    Article  Google Scholar 

  31. McCall GJH (2003) A critique of the analogy between Archaean and Phanerozoic tectonics based on regional mapping of the Mesozoic-Cenozoic plate convergent zone in the Makran, Iran. Precambrian Res 127:5–17

    Article  Google Scholar 

  32. Mohadjer S, Bendick R, Ischuk A, Kuzikov S, Saydullaev U, Lodi S, Zubovich A (2010) Partitioning of India- Eurasia convergence in the Pamir- Hindu Kush from GPS measurements. American Geophysical Union, Washington

    Google Scholar 

  33. Nemati M (2015) Aftershocks investigation of 2010 Dec. and 2011. Jan Rigan earthquakes in the southern Kerman province, SE Iran. J Tethys (Iran) 3(2):96–113

    Google Scholar 

  34. Nemati M (2019) Seismotectonic and seismicity of Makran, a bimodal subduction zone, SE Iran. J Asian Earth Sci 169:139–161

    Article  Google Scholar 

  35. Penney C, Tavakoli F, Saadat A, Nankali HR, Sedighi M, Khorrami F, Sobouti F, Rafi Z, Copley A, Jackson J, Priestley Keith (2017) Geodynamics and tectonics Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone. Geophys J Int 209:1800–1830

    Article  Google Scholar 

  36. Peyret M, Djamour Y, Hessami K, Regard V, Bellier O, Vernant P, Daignieres M, Nankali H, Van Gorp S, Rigoulay M, Goudarzi M (2009) Present-day strain distribution across the Minab-Zendan-Palami fault system from dense GPS transects. Geophys J Int 179:751–762

    Article  Google Scholar 

  37. Quittmeyer RC, Jacob KH (1979) Historical and modern seismicity of Pakistan, Afghanistan, northwestern India, and southeastern Iran. Bull Seismol Soc Am 69, 773–823, p 805, Appendix 3, citing Oldham T (1882) A catalogue of Indian earthquakes from the earliest time to the end of A.D. 1869. Mem Geol Surv India 19: 163–215

  38. Quittmeyer RC, Kafka A (1984) Constraints on plate motions in southern Pakistan and the northern Arabian Sea from the focal mechanisms of small earthquakes. J Geophys Res: Solid Earth 89(B4):2444–2458

    Article  Google Scholar 

  39. Ramanathan K, Mukherji S (1938) A seismological study of the Baluchistan, Quetta, Earthquake of May 31, 1935. Geological Survey of India, Kolkata, pp 483–513

    Google Scholar 

  40. Rani VS, Srivastava K, Srinagesh D, Dimri VP (2011) Spatial and temporal variations of b-value and fractal analysis for the Makran region. Mar Geodesy 34(1):77–82

    Article  Google Scholar 

  41. Regard V, Bellier O, Thomas J-C, Bourl’Es D, Bonnet S, Abbassi M, Feghhi K (2005) Cumulative right-lateral fault slip rate across the Zagros–Makran transfer zone: role of the Minab–Zendan fault system in accommodating Arabia-Eurasia convergence in Southeast Iran. Geophys J Int 162:177–203

    Article  Google Scholar 

  42. Regard V, Hatzfeld D, Molinaro M, Aubourg C, Bayer R, Bellier O, Yamini-Fard F, Peyret M, Abbassi M (2010) The transition between Makran subduction and the Zagros collision: recent advances in its structure and active deformation. Geol Soc Lond Spec Publ 330(1):43–64

    Article  Google Scholar 

  43. Sarwar G, Alizai A (2013) Riding the mobile Karachi arc, Pakistan: understanding tectonic threats. J Himal Earth Sci 46(2):9–24

    Google Scholar 

  44. Scordilis EM (2006) Empirical global relations converting M S and m b to moment magnitude. J Seismol 10(2):225–236

    Article  Google Scholar 

  45. Shi Y, Bolt BA (1982) The standard error of the magnitude-frequency b-value. Bull Seismol Soc Am 72:1677–1687

    Google Scholar 

  46. Smith WD (1981) The b-value as an earthquake precursor. Nature 289(5794):136

    Article  Google Scholar 

  47. Smith LS (2013) The structure, fluid distribution and earthquake potential of the Makran subduction Zone, Pakistan. Univ. of Southampton, Department of ocean and earth sciences, PhD thesis abstract

  48. Smith GL, Mcneill LC, Wang K, He J, Henstock TJ (2013) Thermal structure and megathrust seismogenic potential of the Makran subduction zone. Geophys Res Lett 40:1528–1533

    Article  Google Scholar 

  49. Szeliga W, Bilham R, Kakar DM, Lodi SH (2012) Interseismic strain accumulation along the western boundary of the Indian subcontinent. J Geophys Res 117(1):08404. https://doi.org/10.1029/2011jb008822

    Article  Google Scholar 

  50. Waseem M, Khan MA, Khan S (2019) Seismic sources for southern Pakistan and seismic hazard assessment of Karachi. Nat Hazards 99(1):511–536

    Article  Google Scholar 

  51. Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382

    Article  Google Scholar 

  52. Yeats RS, Lawrence RD, Jamil-ud din S, Khan SH (1979) Surface effects of the 16 March 1978 earthquake, Pakistan–Afghanistan border. In: Farah A, DeJong KA (eds) Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, pp 159–361

    Google Scholar 

  53. Zinke R, Hollingsworth J, Dolan JF (2014) Surface slip and of fault deformation patterns in the 2013 M 7.7 Balochistan, Pakistan earthquake: implications for controls on the distribution of near-surface coseismic slip. Geochem Geophys Geosyst 15:5034–5050

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the guidance of Roger Bilham (Department of Geological Sciences, University of Colorado, Boulder, USA) and Rodolfo Console (Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy) in drafting the manuscript content, result and seismicity analysis. We also thankful to Pakistan Petroleum Limited and administration of Bahria University Karachi Campus (BUKC) for providing the research facility at PPL Post-graduate laboratory, Department of Earth & Environmental Sciences, BUKC. The dataset of this integrated study is a subset of the data resources being utilized in PhD research work of first author of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Jahangir Khan.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, M.J., Ali, M., Xu, M. et al. Seismicity analysis of selected faults in Makran Southern Pakistan. Acta Geophys. (2020). https://doi.org/10.1007/s11600-020-00447-8

Download citation

Keywords

  • Seismicity
  • GIS
  • Karachi
  • Southern Pakistan
  • Awaran earthquake