Skip to main content
Log in

Magnetic interpretation utilizing a new inverse algorithm for assessing the parameters of buried inclined dike-like geological structure

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

A new algorithm has been established to interpret magnetic anomaly data due to inclined dike-like structure. This algorithm uses first horizontal derivative anomalies attained from magnetic anomaly data utilizing filters of sequential window lengths. The final estimated parameters are the half-width, the depth, angle of magnetization and amplitude factor of an inclined dike-like geological structure. A minimum variance criterion is used for selecting the most suitable variables. This algorithm has been realized to theoretical data without and with random noise. The effects of interference due to near structures have additionally been studied. The method was then applied to two field examples from Turkey and Peru, which demonstrate its effectiveness and accurateness. Thus, it is a respectable correspondence among the model parameters retrieved from this approach, drilling information, and the outcomes published in the literature. For example, in Turkey, we applied the technique to gauge the source variables and also the results were precise to w = 64.74 m and h = 87.65 m (2% and 3% errors, respectively) based on information from Aydin and Gelişli (Jeofizik 10:41–49, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelrahman EM, Abo-Ezz ER, Essa KS, El-Araby TM, Soliman KS (2007a) A new least-squares minimization approach to depth and shape determination from magnetic data. Geophys Prospect 55:433–446

    Article  Google Scholar 

  • Abdelrahman EM, Abo-Ezz ER, Soliman KS, EL-Araby TM, Essa KS (2007b) A least-squares window curves method for interpretation of magnetic anomalies caused by dipping dikes. Pure Appl Geophys 164:1027–1044

    Article  Google Scholar 

  • Abdelrahman EM, Abo-Ezz ER, Essa KS (2012) Parametric inversion of residual magnetic anomalies due to simple geometric bodies. Explor Geophys 43:178–189

    Article  Google Scholar 

  • Abo-Ezz ER, Essa KS (2016) A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula. Pure Appl Geophys 173:1265–1278

    Article  Google Scholar 

  • Al-Garni MA (2015) Interpretation of magnetic anomalies due to dipping dikes using neural network inversion. Arab J Geosci 8:8721–8729

    Article  Google Scholar 

  • Aydin A, Gelişli K (1996) Magnetic studies for the skarn zone of Sarihan-Bayburt. Jeofizik 10:41–49 (in Turkish with English Abstract)

    Google Scholar 

  • Baiyegunhi C, Gwavava O (2017) Magnetic investigation and 2 D gravity profile modelling across the Beattie magnetic anomaly in the southeastern Karoo Basin, South Africa. Acta Geophys 65:119–138

    Article  Google Scholar 

  • Bean RJ (1966) A rapid graphical solution for the aeromagnetic anomaly of the two-dimensional tabular body. Geophysics 31:963–970

    Article  Google Scholar 

  • Bhimasankaram VLS, Mohan NI, Seshagiri Rao SV (1978) Interpretation of magnetic anomalies of dikes using Fourier transforms. Geophys Explor 16:259–266

    Google Scholar 

  • Cassano E, Rocca F (1974) Interpretation of magnetic anomalies using spectral estimation techniques. Geophys Prospect 23:663–681

    Article  Google Scholar 

  • Cooper GRJ (2012) The semi-automatic interpretation of magnetic dyke anomalies. Comput Geosci 44:95–99

    Article  Google Scholar 

  • Cooper GRJ (2015) Using the analytic signal amplitude to determine the location and depth of thin dikes from magnetic data. Geophysics 80:1–6

    Article  Google Scholar 

  • Dondurur D, Pamukçu OA (2003) Interpretation of magnetic anomalies from dipping dike model using inverse solution, power spectrum and Hilbert transform methods. J Balk Geophys Soc 6:127–139

    Google Scholar 

  • Essa KS, Elhussein M (2017) A new approach for the interpretation of magnetic data by a 2-D dipping dike. J Appl Geophys 136:431–443

    Article  Google Scholar 

  • Essa KS, Nady AG, Mostafa MS, Elhussein M (2018) Implementation of potential field data to depict the structural lineaments of the Sinai Peninsula, Egypt. J Afr Earth Sci 147:43–53

    Article  Google Scholar 

  • Gadirov VG, Eppelbaum LV, Kuderavets RS, Menshove OI, Gadirov KV (2018) Indicative features of local magnetic anomalies from hydrocarbon deposits: examples from Azerbaijan and Ukraine. Acta Geophys. https://doi.org/10.1007/s11600-018-0224-0

    Google Scholar 

  • Gay SP (1963) Standard curves for interpretation of magnetic anomalies over long tabular bodies. Geophysics 28:161–200

    Article  Google Scholar 

  • Hood P (1964) The Königsberger ratio and the dipping-dyke equation. Geophys Prospect 12:440–456

    Article  Google Scholar 

  • Keating PB, Pilkington M (1990) An automated method for the interpretation of magnetic vertical-gradient anomalies. Geophysics 55:336–343

    Article  Google Scholar 

  • Koulomzine T, Lamontagne Y, Nadeau A (1970) New methods for the direct interpretation of magnetic anomalies caused by inclined dikes of infinite length. Geophysics 35:812–830

    Article  Google Scholar 

  • McGrath PH, Hood PJ (1970) The dipping dike case, a computer curve matching method of magnetic interpretation. Geophysics 35:831–848

    Article  Google Scholar 

  • Mehanee SA (2015) Tracing of paleo-shear zones by self-potential data inversion: case studies from the KTB, Rittsteig, and Grossensees graphite-bearing fault planes. Earth Planets Space 67(1):14

    Article  Google Scholar 

  • Mehanee SA, Essa KS (2015) 2.5D regularized inversion for the interpretation of residual gravity data by a dipping thin sheet: numerical examples and case studies with an insight on sensitivity and non-uniqueness. Earth Planets Space 67(1):130

    Article  Google Scholar 

  • Pal PC (1985) A gradient analysis based simplified inversion strategy for the magnetic anomaly of an inclined and infinite thick dike. Geophysics 50:1179–1182

    Article  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes, the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Rao BSR, Prakasa Rao TKS, Gopala Rao D, Kesavamani M (1972) Derivatives and dike anomaly interpretation. Pure Appl Geophys 99:120–129

    Article  Google Scholar 

  • Rao DA, Babu HVR, Narayan PVS (1981) Interpretation of magnetic anomalies due to dikes: the complex gradient method. Geophysics 46:1572–1578

    Article  Google Scholar 

  • Sengupta S, Das SK (1975) Interpretation of magnetic anomalies of dikes by Fourier transforms. Pure Appl Geophys 113:625–633

    Article  Google Scholar 

  • Smith RS, Salem A, Lemieux J (2005) An enhanced method for source parameter imaging of magnetic data collected for mineral exploration. Geophys Prospect 53:655–665

    Article  Google Scholar 

  • Werner S (1953) Interpretation of magnetic anomalies of sheet-like bodies. Sveriges Geologiska Undersökning. Ser C Årsbok 43(6):49

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Eleftheria E. Papadimitriou, Editor-in-Chief, Prof. Ralf Schaa, Associate Editor, and the two capable expert reviewers for their keen interest, valuable comments on the manuscript, and improvements to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid S. Essa.

Appendix

Appendix

Hood (1964), McGrath and Hood (1970) and Essa and Elhussein (2017) represent an equation for the total magnetic anomaly of an inclined dike (Fig. 1) as follows:

$$\begin{aligned} & H\left( {x_{j } ,h,w, \theta } \right) \\ & \quad = A_{c} \left[ {\sin \left( {\theta \times \frac{\pi }{180}} \right) \left( {\tan^{ - 1} \left( { \frac{{x_{j} + w}}{h} } \right){-}\tan^{ - 1} \left( { \frac{{x_{j} - w}}{h}} \right)} \right)} \right. \\ & \quad \quad \left. { - \frac{{\cos \left( {\theta \times \frac{\pi }{180}} \right)}}{2} \ln \left( {\frac{{\left( {x_{j} + w} \right)^{2} + h^{2} }}{{\left( {x_{j} - w} \right)^{2} + h^{2} }}} \right)} \right], \\ & \quad \quad j = 1, 2, 3, 4, \ldots N \\ \end{aligned}$$
(10)

where h (m) is the depth to the top of the inclined dike, w (m) is the half-width of the inclined dike, θ (°) is the angle of magnetization (index parameter), xj (m) are the horizontal coordinates, and A (nT) is the amplitude factor.

Using three observation points (xj − s, xj, xj + s) along the anomaly profile; the first horizontal derivative (Hx) of the total magnetic anomaly is given by the following expression:

$$H_{x} \left( {x_{j } ,h, w, \theta ,s} \right) = \frac{{H\left( {x_{j } + s} \right) - H\left( {x_{j } - s } \right)}}{2 s} ,$$
(11)

where s = 1, 2, …M spacing units which is called the graticule spacing or window length.

Substituting Eq. (10) in Eq. (11), the first horizontal derivative (FHD) of the total magnetic anomaly is given by:

$$\begin{aligned} & H_{x} \left( {x_{j } , h, w, \theta ,s} \right) \\ & \quad = \frac{{ A_{c} }}{2 s}\left[ {\sin \left( {\theta \times \frac{\pi }{180}} \right)\left( {\tan^{ - 1} \left( {\frac{{x_{j } + s + w}}{h}} \right) + \tan^{ - 1} \left( {\frac{{ - x_{j} - s + w}}{h}} \right)} \right.} \right. \\ & \quad \quad \left. { + \tan^{ - 1} \left( {\frac{{ - x_{j} + s - w}}{h}} \right) + \tan^{ - 1} \left( {\frac{{x_{j } - s - w}}{h}} \right)} \right) \\ & \quad \quad \left. { + \frac{{\cos \left( {\theta \times \frac{\pi }{180}} \right)}}{2}\ln \left( {\frac{{\left( {\frac{{(x_{j } - s + w)^{2} + h^{2} }}{{(x_{j } - s - w)^{2} + h^{2} }}} \right)}}{{\left( {\frac{{(x_{j } + s + w)^{2} + h^{2} }}{{(x_{j } + s - w)^{2} + h^{2} }}} \right)}}} \right)} \right]. \\ \end{aligned}$$
(12)

By substituting xj = 0 in Eq. (12), the amplitude factor (Ac) can be estimated as follows when s > w:

$$A_{c} = \frac{{2s H_{x} \left( 0 \right)}}{{ \cos \left( {\theta \times \frac{\pi }{180}} \right) \ln \left( {\frac{{\left( {s - w} \right)^{2} + h^{2} }}{{\left( {s + w} \right)^{2} + h^{2} }}} \right)}}.$$
(13)

Using Eq. (13), Eq. (12) can be written as the follows:

$$\begin{aligned} & H_{x} \left( {x_{j } ,h, w, \theta ,s} \right) \\ & \quad = \frac{{H_{x} \left( 0 \right) }}{{\cos \left( {\theta \times \frac{\pi }{180}} \right) \ln \left( { \frac{{\left( {s - w } \right)^{2} + h^{2} }}{{\left( { s + w } \right)^{2} + h^{2} }}} \right)}} \\ & \quad \quad \times\, \left[ {\sin \left( {\theta \times \frac{\pi }{180}} \right)\left( {\tan^{ - 1} \left( {\frac{{x_{j } + s + w}}{h}} \right) + \tan^{ - 1} \left( {\frac{{ - x_{j} - s + w}}{h}} \right)} \right.} \right. \\ & \quad \quad \left. { + \tan^{ - 1} \left( {\frac{{ - x_{j} + s - w}}{h}} \right) + \tan^{ - 1} \left( {\frac{{x_{j } - s - w}}{h}} \right)} \right) \\ & \quad \quad \left. { + \frac{\cos \theta }{2}\ln \left( {\frac{{\left( {\frac{{(x_{j } - s + w)^{2} + h^{2} }}{{(x_{j } - s - w)^{2} + h^{2} }}} \right)}}{{\left( {\frac{{(x_{j } + s + w)^{2} + h^{2} }}{{(x_{j } + s - w)^{2} + h^{2} }}} \right)}}} \right)} \right] \\ \end{aligned}$$
(14)

Putting xj = + s, xj = − s, xj = + 2s, xj = − 2s, we get the following four equations, respectively:

$$\begin{aligned} & H_{x} \left( { + s} \right) \\ & \quad = \frac{{H_{x} \left( 0 \right) }}{{\cos \left( {\theta \times \frac{\pi }{180}} \right) \ln \left( { \frac{{\left( {s - w } \right)^{2} + h^{2} }}{{\left( { s + w } \right)^{2} + h^{2} }}} \right)}} \\ & \quad \quad \times\, \left[ {\sin \left( {\left( {\theta \times \frac{\pi }{180}} \right) \times \frac{\pi }{180}} \right)\left( { \tan^{ - 1} \left( {\frac{2s + w}{h} } \right)} \right.} \right. \\ & \quad \quad \left. { + \tan^{ - 1} \left( {\frac{w - 2s}{h} } \right) + 2 \tan^{ - 1} \left( { - \frac{w}{h} } \right)} \right) \\ & \quad \quad \left. { + \frac{{\cos \left( {\theta \times \frac{\pi }{180}} \right)}}{2} \ln \left( {\frac{{\left( {2s - w} \right)^{2} + h^{2} }}{{\left( { 2s + w} \right)^{2} + h^{2} }}} \right)} \right] \\ \end{aligned}$$
(15)
$$\begin{aligned} & H_{x} \left( { - s} \right) \\ & \quad = \frac{{H_{x} \left( 0 \right) }}{{\cos \left( {\theta \times \frac{\pi }{180}} \right) \ln \left( { \frac{{\left( {s - w } \right)^{2} + h^{2} }}{{\left( { s + w } \right)^{2} + h^{2} }}} \right)}} \\ & \quad \quad \left[ {\sin \left( {\theta \times \frac{\pi }{180}} \right) \left( {2 \tan^{ - 1} \left( {\frac{w}{h} } \right) + \tan^{ - 1} \left( {\frac{2s - w}{h} } \right) + \tan^{ - 1} \left( {\frac{ - 2s - w}{h} } \right)} \right)} \right. \\ & \quad \quad \left. { + \frac{{\cos \left( {\theta \times \frac{\pi }{180}} \right)}}{2} \ln \left( {\frac{{\left( {2s - w} \right)^{2} + h^{2} }}{{\left( {2s + w} \right)^{2} + h^{2} }}} \right)} \right] \\ \end{aligned}$$
(16)
$$\begin{aligned} & H_{x} \left( { + 2s} \right) \\ & \quad = \frac{{H_{x} \left( 0 \right) }}{{\cos \left( {\theta \times \frac{\pi }{180}} \right) \ln \left( { \frac{{\left( {s - w } \right)^{2} + h^{2} }}{{\left( { s + w } \right)^{2} + h^{2} }}} \right)}} \\ & \quad \quad \left[ {\sin \left( {\theta \times \frac{\pi }{180}} \right) \left( {\tan^{ - 1} \left( {\frac{3s + w}{h} } \right) + \tan^{ - 1} \left( {\frac{w - 3s}{h} } \right) + \tan^{ - 1} \left( {\frac{ - s - w}{h} } \right) + \tan^{ - 1} \left( {\frac{s - w}{h} } \right)} \right) } \right. \\ & \quad \quad \left. { + \frac{{\cos \left( {\theta \times \frac{\pi }{180}} \right)}}{2} \ln \left( {\frac{{\left( {\frac{{\left( {s + w} \right)^{2} + h^{2} }}{{\left( { s - w} \right)^{2} + h^{2} }}} \right)}}{{\left( {\frac{{\left( { 3s + w} \right)^{2} + h^{2} }}{{\left( { 3s - w} \right)^{2} + h^{2} }}} \right)}}} \right)} \right] \\ \end{aligned}$$
(17)
$$\begin{aligned} & H_{x} \left( { - 2s} \right) \\ & \quad = \frac{{H_{x} \left( 0 \right) }}{{\cos \left( {\theta \times \frac{\pi }{180}} \right) \ln \left( { \frac{{\left( {s - w } \right)^{2} + h^{2} }}{{\left( { s + w } \right)^{2} + h^{2} }}} \right)}} \\ & \quad \quad \left[ {\sin \left( {\theta \times \frac{\pi }{180}} \right)\left( {\tan^{ - 1} \left( {\frac{w - s}{h} } \right) + \tan^{ - 1} \left( {\frac{s + w}{h} } \right)} \right. } \right. \\ & \quad \quad \left. { + \tan^{ - 1} \left( {\frac{3s - w}{h} } \right) + \tan^{ - 1} \left( {\frac{ - 3s - w}{h} } \right)} \right) \\ & \quad \quad \left. { + \frac{{\cos \left( {\theta \times \frac{\pi }{180}} \right)}}{2} \ln \left( {\frac{{\left( {\frac{{\left( {3s - w} \right)^{2} + h^{2} }}{{\left( {3s + w} \right)^{2} + h^{2} }}} \right)}}{{\left( {\frac{{\left( {s - w} \right)^{2} + h^{2} }}{{\left( { s + w} \right)^{2} + h^{2} }}} \right)}}} \right)} \right] \\ \end{aligned}$$
(18)

By subtracting Eq. (16) from Eq. (15) and Eq. (18) from Eq. (17), we get the following two equations, respectively:

$$\begin{aligned} & H_{x} \left( { + s) - H_{x} ( - s} \right) \\ & \quad = \frac{{H_{x} \left( 0 \right) \sin \left( {\theta \times \frac{\pi }{180}} \right)}}{{ \cos \left( {\theta \times \frac{\pi }{180}} \right) \ln \left( { \frac{{\left( {s - w } \right)^{2} + h^{2} }}{{\left( { s + w } \right)^{2} + h^{2} }}} \right)}} \\ & \quad \quad \times\, \left[ {2 \tan^{ - 1} \left( {\frac{2s + w}{h} } \right) + 2 \tan^{ - 1} \left( {\frac{w - 2s}{h} } \right) + 4 \tan^{ - 1} \left( { - \frac{w}{h} } \right)} \right] \\ \end{aligned}$$
(19)
$$\begin{aligned} & H_{x} \left( { + 2s) - H_{x} ( - 2s} \right) \\ & = \frac{{H_{x} \left( 0 \right) \sin \left( {\theta \times \frac{\pi }{180}} \right)}}{{ \cos \left( {\theta \times \frac{\pi }{180}} \right)\ln \left( {\frac{{\left( {s - w } \right)^{2} + h^{2} }}{{\left( { s + w } \right)^{2} + h^{2} }}} \right)}} \\ & \quad \quad \left[ {2 \tan^{ - 1} \left( {\frac{3s + w}{h} } \right) + 2 \tan^{ - 1} \left( {\frac{w - 3s}{h} } \right) } \right. \\ & \quad \quad \left. { + 2 \tan^{ - 1} \left( {\frac{ - s - w}{h} } \right) + 2 \tan^{ - 1} \left( {\frac{s - w}{h} } \right)} \right] \\ \end{aligned}$$
(20)

Then by dividing Eq. (19) by Eq. (20), we get the following:

$$q = \frac{{\tan^{ - 1} \left( {\frac{2s + w}{h} } \right) + \tan^{ - 1} \left( {\frac{w - 2s}{h} } \right) + 2 \tan^{ - 1} \left( { - \frac{w}{h} } \right)}}{{\tan^{ - 1} \left( {\frac{3s + w}{h} } \right) + \tan^{ - 1} \left( {\frac{w - 3s}{h} } \right) + \tan^{ - 1} \left( {\frac{ - s - w}{h} } \right) + \tan^{ - 1} \left( {\frac{s - w}{h} } \right)}},$$
(21)

where

$$q = \frac{{H_{x} \left( { + s) - H_{x} ( - s} \right)}}{{H_{x} \left( { + 2s) - H_{x} ( - 2s} \right)}} .$$

From Eq. (21) and by rearrangement, we can calculate \(h_{\text{f}}\) from the following equation:

$$h_{\text{f}} = \frac{3s + w}{{\tan \left( {\frac{P}{q}} \right)}} ,$$
(22)

where

$$\begin{aligned} P & = q \tan^{ - 1} \left( {\frac{3s - w}{{h_{\text{i}} }} } \right) + q \tan^{ - 1} \left( {\frac{s + w}{{h_{\text{i}} }} } \right) + q \tan^{ - 1} \left( {\frac{w - s}{{h_{\text{i}} }} } \right) + \tan^{ - 1} \left( {\frac{2s + w}{{h_{\text{i}} }} } \right) \\ & + \tan^{ - 1} \left( {\frac{w - 2s}{{h_{\text{i}} }} } \right) + 2\tan^{ - 1} \left( { - \frac{w}{{h_{\text{i}} }} } \right). \\ \end{aligned}$$

Equation (22) can be deciphered for h using the standard methods for solving nonlinear equations (Press et al. 1986), and its iteration form can be expressed as:

$$h_{\text{f}} = f\left( {h_{\text{i}} } \right) ,$$
(23)

wherehi is the initial depth estimate and hf is the revised depth, for the next iteration hf will be used as hi. The iteration stops when \(\left| {h_{\text{f}} - h_{\text{i}} } \right| \le e\), where e is a small predetermined real number close to zero.

From Eq. (15), we can calculate the magnetization angle as follows:

$$\theta c = \tan^{ - 1} \left[ {\frac{{\frac{{H_{x} \left( { + s} \right). \ln \left( { \frac{{\left( {s - w } \right)^{2} + h^{2} }}{{\left( { s + w } \right)^{2} + h^{2} }}} \right)}}{{M_{x} \left( 0 \right)}} - \frac{1}{2} \ln \left( {\frac{{\left( {2s - w} \right)^{2} + h^{2} }}{{\left( {2s + w} \right)^{2} + h^{2} }}} \right)}}{{\tan^{ - 1} \left( {\frac{2s + w}{h} } \right) + \tan^{ - 1} \left( {\frac{w - 2s}{h} } \right) + 2\tan^{ - 1} \left( {\frac{ - w}{h} } \right)}}} \right].$$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essa, K.S., Elhussein, M. Magnetic interpretation utilizing a new inverse algorithm for assessing the parameters of buried inclined dike-like geological structure. Acta Geophys. 67, 533–544 (2019). https://doi.org/10.1007/s11600-019-00255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-019-00255-9

Keywords

Navigation