Acta Geophysica

, Volume 66, Issue 2, pp 233–241 | Cite as

Satellite orbit determination using quantum correlation technology

  • Bo Zhang
  • Fuping Sun
  • Xinhui Zhu
  • Xiaolin Jia
Research Article - Atmospheric and Space Sciences


After the presentation of second-order correlation ranging principles with quantum entanglement, the concept of quantum measurement is introduced to dynamic satellite precise orbit determination. Based on the application of traditional orbit determination models for correcting the systematic errors within the satellite, corresponding models for quantum orbit determination (QOD) are established. This paper experiments on QOD with the BeiDou Navigation Satellite System (BDS) by first simulating quantum observations of 1 day arc-length. Then the satellite orbits are resolved and compared with the reference precise ephemerides. Subsequently, some related factors influencing the accuracy of QOD are discussed. Furthermore, the accuracy for GEO, IGSO and MEO satellites increase about 20, 30 and 10 times, respectively, compared with the results from the resolution by measured data. Therefore, it can be expected that quantum technology may also bring delightful surprises to satellite orbit determination as have already emerged in other fields.


Quantum correlation Entanglement Satellite Orbit determination 



This study was supported by National Natural Science Foundation of China (Grant No. 41674042). Professor Jinghua Qu, Doctor Hanbing Peng and Guofeng Ji gave some valuable proposals. All are greatly acknowledged.

Compliance with ethical standards

Competing interests

The authors have declared that no competing interests exist.


  1. Boehm J, Niell A et al (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):1–4CrossRefGoogle Scholar
  2. Combrinck L (2010) Satellite laser ranging. In sciences of Geodesy-I. Springer, Berlin, pp 301–338CrossRefGoogle Scholar
  3. D’Ariano GM, Lo PP et al (2001) Using entanglement improves the precision of quantum measurements. Phys Rev Lett 87(27 Pt 1):270404CrossRefGoogle Scholar
  4. Degnan JJ (1993) Millimeter accuracy satellite laser ranging: a review, American Geophysical UnionGoogle Scholar
  5. Giovannetti V, Lloyd S et al (2001) Quantum-enhanced positioning and clock synchronization. Nature 412(6845):417CrossRefGoogle Scholar
  6. Giovannetti V, Lloyd S et al (2002) Positioning and clock synchronization through entanglement. Phys Rev A 65(2):130–132CrossRefGoogle Scholar
  7. Glauber RJ (1997) The quantum theory of optical coherence. Phys Rev 130(6):2529–2539CrossRefGoogle Scholar
  8. Hong CK, Ou ZY et al (1987) Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett 59(18):2044CrossRefGoogle Scholar
  9. Iorio L (2001) Satellite laser ranging and general relativity. Gen Relativ Gravit 43(12):3243–3245Google Scholar
  10. Jiao W, Ding Q et al (2011) Monitoring and assessment of GNSS open services. Sci Sin 64(S1):S19–S29Google Scholar
  11. Lemoine FG, Smith DE et al (1997) The development of the NASA GSFC and NIMA joint geopotential model. Springer, BerlinCrossRefGoogle Scholar
  12. McCarthy DD and Petit G (2003) IERS Technical Note No. 32. IERS Conventions: 33-56Google Scholar
  13. Mendes VB, Prates G et al (2002) Improved mapping functions for atmospheric refraction correction in SLR. Geophys Res Lett 29(10):51–53CrossRefGoogle Scholar
  14. Montenbruck O, van Helleputte T et al (2005) Reduced dynamic orbit determination using GPS code and carrier measurements. Aerosp Sci Technol 9(3):261–271CrossRefGoogle Scholar
  15. Montenbruck O, Steigenberger P et al (2013) IGS-MGEX: preparing the ground for multi-constellation GNSS science. Espace 9(1):42–49Google Scholar
  16. Ozawa M (2001) Position measuring interactions and the Heisenberg uncertainty principle. Phys Lett A 299(1):1–7CrossRefGoogle Scholar
  17. Pearlman MR, Degnan JJ et al (2002) The international laser ranging service. Adv Space Res 30(2):135–143CrossRefGoogle Scholar
  18. Schutz BE, Tapley BD et al (2013) Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON. Geophys Res Lett 21(19):2179–2182CrossRefGoogle Scholar
  19. Shen Y, Xu L et al (2015) Relative orbit determination for satellite formation flying based on quantum ranging. Adv Space Res 56(4):680–692CrossRefGoogle Scholar
  20. Springer TA, Beutler G et al (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 2(3):50–62CrossRefGoogle Scholar
  21. Uhlemann M, Gendt G et al (2015) GFZ Global Multi-GNSS network and data processing results. Springer, BerlinCrossRefGoogle Scholar
  22. Valencia A, Scarcelli G et al (2004) Distant clock synchronization using entangled photon pairs. Appl Phys Lett 85(13):2655–2657CrossRefGoogle Scholar
  23. Švehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv Geosci 1(1):47–56Google Scholar
  24. Wong B (2014) Wuantum entanglement. Quantum Inform 81(2):865–942Google Scholar
  25. Wu SC, Yunck TP et al (1991) Reduced-dynamic technique for precise orbit determination of low earth satellites. J Guid Control Dyn 14(1):2143–2153CrossRefGoogle Scholar
  26. XianPin Q (2009) Research on Precision Orbit Determination Theory and Method of Low Earth Orbiter Based on GPS Technique, Zhengzhou Institute of Surveying and Mapping. DGoogle Scholar
  27. Xiao JJ, Fang C et al (2013) Distance ranging based on quantum entanglement. Chin Phys Lett 30(10):100Google Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Zhengzhou Institute of Surveying and MappingZhengzhouChina
  2. 2.Research Institute of Surveying and MappingXi’anChina

Personalised recommendations