Advertisement

Acta Geophysica

, Volume 66, Issue 3, pp 329–343 | Cite as

Detection of trends and break points in temperature: the case of Umbria (Italy) and Guadalquivir Valley (Spain)

  • Pascual Herrera-Grimaldi
  • Amanda García-Marín
  • José Luís Ayuso-Muñoz
  • Alessia Flamini
  • Renato Morbidelli
  • José Luís Ayuso-Ruíz
Research Article - Special Issue
  • 71 Downloads

Abstract

The increase of air surface temperature at global scale is a fact with values around 0.85 °C since the late nineteen century. Nevertheless, the increase is not equally distributed all over the world, varying from one region to others. Thus, it becomes interesting to study the evolution of temperature indices for a certain area in order to analyse the existence of climatic trend in it. In this work, monthly temperature time series from two Mediterranean areas are used: the Umbria region in Italy, and the Guadalquivir Valley in southern Spain. For the available stations, six temperature indices (three annual and three monthly) of mean, average maximum and average minimum temperature have been obtained, and the existence of trends has been studied by applying the non-parametric Mann–Kendall test. Both regions show a general increase in all temperature indices, being the pattern of the trends clearer in Spain than in Italy. The Italian area is the only one at which some negative trends are detected. The presence of break points in the temperature series has been also studied by using the non-parametric Pettit test and the parametric standard normal homogeneity test (SNHT), most of which may be due to natural phenomena.

Keywords

Trend Temperature Break points Homogeneity tests 

Notes

Acknowledgements

The authors want to acknowledge the kindness and help of Jose Carlos González-Hidalgo with providing the temperature data of the Guadalquivir Valley stations from the database MOTEDAS.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines in climate metadata and homogenization. WCDMP No. 53, WMO-TD No. 1186. WMO. Geneva. SwitzerlandGoogle Scholar
  2. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675CrossRefGoogle Scholar
  3. Brunet M, Sigro J, Saladie O, Aguilar E, Jones P, Moberg A, Walther A, Lopez D (2005) Spatial patterns of long-term Spanish temperature change. Geophys Res Abstr 7:04007Google Scholar
  4. Brunet M, Saladie O, Jones PD, Sigro J, Aguilar E, Moberg A, Lister DH, Walther A, Lopez D, Almarza C (2006) The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850–2003). Int J Climatol 26:1777–1802CrossRefGoogle Scholar
  5. Brunet M, Jones P, Sigro J, Saladie O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, Lopez D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117CrossRefGoogle Scholar
  6. Brunetti M, Maugeri M, Nanni T (2000a) Variations of temperature and precipitation in Italy from 1866 to 1995. Theor Appl Climatol 65:165–174CrossRefGoogle Scholar
  7. Brunetti M, Buffoni L, Maugeri M, Nanni T (2000b) Trends of minimum and maximum daily temperatures in Italy from 1865 to 1996. Theor Appl Climatol 66:49–60CrossRefGoogle Scholar
  8. Brunetti M, Maugeri M, Monti F, Nannia T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381CrossRefGoogle Scholar
  9. Caloiero T, Coscarelli R, Ferraric E, Sirangelod B (2017) Trend analysis of monthly mean values and extreme indices of daily temperature in a region of southern Italy. Int J Climatol.  https://doi.org/10.1002/joc.5003 Google Scholar
  10. del Río S, Herreo L, Pinto-Gomes C, Penas A (2011) Spatial analyses of mean temperature trends in Spain over the period 1961–2006. Glob Planet Change 78:65–75CrossRefGoogle Scholar
  11. del Río S, Cano-Ortiz A, Herrero L, Penas A (2012) Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor Appl Climatol 109:605–626CrossRefGoogle Scholar
  12. Douglas EM, Vogel RM, Kroll CN (2000) Trends in floods in low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105CrossRefGoogle Scholar
  13. Feidas H (2016) Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: recent trends and an update to 2013. Theor Appl Climat.  https://doi.org/10.1007/s00704-016-1854-2 Google Scholar
  14. Gonzalez-Hidalgo JC, Peña-Angulo D, Brunetti M, Cortesi C (2015) MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951–2010). Int J Climatol 35:4444–4463CrossRefGoogle Scholar
  15. Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363CrossRefGoogle Scholar
  16. Hu Y, Maskey S, Uhlenbrook S (2012) Trends in temperature and rainfall extremes in the Yellow River source region, China. Clim Change 110:403–429CrossRefGoogle Scholar
  17. IPCC (2014) Climate change 2014: synthesis report. Fifth Assessment report, Ginebra, SuizaGoogle Scholar
  18. Jung IW, Baeand DH, Kim G (2011) Recent trends of mean and extreme precipitation in Korea. Int J Climatol 31:359–370CrossRefGoogle Scholar
  19. Kahya E, Kalayci S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289:128–144CrossRefGoogle Scholar
  20. Kendall MG (1975) Rank correlation methods. Ed, Charles Griffin, LondonGoogle Scholar
  21. Khaliq MN, Ouarda TBMJ (2007) Short Communication on the critical values of the standard normal homogeneity test (SNHT). Int J Climatol 27:681–687CrossRefGoogle Scholar
  22. Klok EJ, Klein-Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191CrossRefGoogle Scholar
  23. Llorente M (2012) Tendencias españolas de variables agrometeorológicas en los últimos 30 años. Departamento de Producción Vegetal, Universidad Politécnica de Madrid, ETSIA, p 99Google Scholar
  24. Mann HB (1945) Non parametric test against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  25. Martínez MD, Serra C, Burgueño A, Lana X (2010) Time trends of daily maximum and minimum temperatures in Catalonia (NE Spain) for the period 1975–2004. Int J Climatol 30:267–290CrossRefGoogle Scholar
  26. Morales CG, Ortega MT, Labajo JL, Piorno A (2005) Recent trends and temporal behavior of thermal variables in the region of Castilla–Leon (Spain). Atmosfera 18:71–90Google Scholar
  27. Morozova AL, Valente MA (2012) Homogenization of Portuguese long-term temperature data series: Lisbon, Coimbra and Porto. Earth Syst Sci Data 4:187–213CrossRefGoogle Scholar
  28. Pandžić K, Likso T (2010) Homogeneity of average air temperature time series for Croatia. Int J Climatol 30:1215–1225Google Scholar
  29. Pettit AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135CrossRefGoogle Scholar
  30. Piccarreta M, Lazzari M, Pasini A (2015) Trends in daily temperature extremes over the Basilicata region (southern Italy) from 1951 to 2010 in a Mediterranean climatic context. Int J Climatol 35:1964–1975CrossRefGoogle Scholar
  31. Rougé C, Ge Y, Cai X (2013) Detecting gradual abrupt changes in hydrological records. Adv Water Resour 53:33–44CrossRefGoogle Scholar
  32. Shadmani M, Marofiand S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman’s Rho tests in Arid Regions of Iran. Water Resour Manage 26:211–224CrossRefGoogle Scholar
  33. Sousa A, García-Barrón L, Jurado V (2007) Climate change in Andalusia: trends and environmental consecuences. Consejería de Medio Ambiente. Junta de AndalucíaGoogle Scholar
  34. Tank AMGK, Könnem GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680CrossRefGoogle Scholar
  35. Tomozeiu R, Pavan V, Cacciamani C, Amici M (2006) Observed temperature changes in Emilia-Romagna: mean values and extremes. Clim Res 31(2–3):217–225CrossRefGoogle Scholar
  36. Viola F, Liuzzo L, Noto LV, Lo Conti F, La Loggia G (2014) Spatial distribution of temperature trends in Sicily. Int J Climatol 34:1–17CrossRefGoogle Scholar
  37. Wijngaard JB, Klein Tank AMG, Konnen GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692CrossRefGoogle Scholar
  38. Yu YS, Zou S, Whittemore D (1993) Nonparametric trend analysis of water quality data of rivers in Kansas. J Hydrol 150:61–80CrossRefGoogle Scholar
  39. Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Processes 16:1807–1829CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Área de Proyectos de Ingeniería, Departmento de Ingeniería RuralUniversidad de CórdobaCórdobaSpain
  2. 2.Department of Civil and Environmental EngineeringUniversity of PerugiaPerugiaItaly

Personalised recommendations