Skip to main content
Log in

Simulation of the microtremor H/V spectrum based on the theory of surface wave propagation in a layered half-space

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Subsurface velocity structures must be estimated to predict long-period ground motions and seismic hazards. Subsurface velocity structures can be constructed via an inversion of the horizontal-to-vertical (H/V) spectral ratio of microtremor (MHV) curves; thus, a method of simulating the MHV curves is key. In this study, we use the H/V spectral ratio of the surface wave (SHV) based on the surface wave propagation theory in a layered half-space to simulate the MHV curves at sites A and B of the Yuxi basin. Then, we attempt to analyze the features of the SHV curves. We find the H/V ratio of the microtremor loading source to be independent of the peak frequency of the SHV curve, but it has some relation to the amplitude of the SHV curve. Moreover, to reduce the error in subsurface velocity structures obtained by the MHV curves, we suggest that the SHV curves at near-peak frequencies should not be considered in the inversion, because the amplitude deviation is higher at the peak frequency of the MHV curve. In addition, the best frequency ranges for the inversion of the microtremor H/V spectrum are between the peak and trough frequencies of the microtremor H/V spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst Tokyo Univ 35:415–456

    Google Scholar 

  • Apostolidis P, Raptakis D, Roumelioti Z, Pitilakis K (2004) Determination of S-wave velocity structure using microtremors and SPAC method applied in Thessaloniki (Greece). Soil Dyn Earthq Eng 24(1):49–67. https://doi.org/10.1016/j.soildyn.2003.09.001

    Article  Google Scholar 

  • Arai H, Tokimatsu K (2000) Effects of Rayleigh and Love waves on microtremor H/V spectra. In: the 12th world conference on earthquake engineering, Auckland, New Zealand, 30 January–4 February 2000

  • Arai H, Tokimatsu K (2004) S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull Seismol Soc Am 94(1):53–63

    Article  Google Scholar 

  • Arai H, Tokimatsu K (2005) S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seismol Soc Am 95(5):1766–1778. https://doi.org/10.1785/0120040243

    Article  Google Scholar 

  • Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fäh D (2006) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167(2):827–837

    Article  Google Scholar 

  • Bonnefoy-Claudet S, Köhler A, Cornou C, Wathelet M, Bard PY (2008) Effects of Love waves on microtremor H/V ratio. Bull Seismol Soc Am 98(1):288–300

    Article  Google Scholar 

  • Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418

    Article  Google Scholar 

  • Carcione JM, Picotti S, Francese R, Giorgi M, Pettenati F (2017) Effect of soil and bedrock anelasticity on the S-wave amplification function. Geophys J Int 208:424–431

    Article  Google Scholar 

  • Chen XL, Gao MT, Yu YX, Chen K, Li TF (2014) Applicability of topographic slope method for seismic site soil classification of Yuxi-Jiangchuan-Tonghai-Basin in China. Earthq Eng Eng Dyn S1:146–152 (in Chinese)

    Google Scholar 

  • Claprood M, Asten MW, Kristek J (2011) Using the SPAC microtremor method to identify 2D effects and evaluate 1D shear-wave velocity profile in valleys. Bull Seismol Soc Am 101(101):826–847. https://doi.org/10.1785/0120090232

    Article  Google Scholar 

  • Delgado J, Casado CL, Giner J, Estevez A, Cuenca A, Molina S (2000) Microtremors as a geophysical exploration tool: applications and limitations. Pure Appl Geophys 157(9):1445–1462

    Article  Google Scholar 

  • Dolenc D (2005) Microseisms observations in the Santa Clara Valley, California. Bull Seismol Soc Am 95(3):1137–1149

    Article  Google Scholar 

  • Endrun B (2011) Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements. J Seismol 15(3):443–472

    Article  Google Scholar 

  • Fäh D, Kind F, Giardini D (2001) A theoretical investigation of average H/V ratios. Geophys J Int 145(2):535–549

    Article  Google Scholar 

  • Fäh D, Kind F, Giardini D (2003) Inversion of local s-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. J Seismol 7(4):449–467. https://doi.org/10.1023/B:JOSE.0000005712.86058.42

    Article  Google Scholar 

  • Gao MT, Yu YX, Zhang XM, Wu J, Hu P, Ding YH (2002) Three-dimensional finite-difference simulations of ground motions in the Beijing area. Earthq Res China 18(4):356–364 (in Chinese)

    Google Scholar 

  • García-Jerez A, Luzón F, Sánchez-Sesma FJ, Lunedei E, Albarello D, Santoyo MA, Almendros J (2013) Diffuse elastic wavefield within a simple crustal model. Some consequences for low and high frequencies. J Geophys Res-Solid Earth 118(10):5577–5595

    Article  Google Scholar 

  • García-Jerez A, Piña-Flores J, Sánchez-Sesma FJ, Luzón F, Perton M (2016) A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption. Comput Geosci 97:67–78

    Article  Google Scholar 

  • Guéguen P, Cornou C, Garambois S, Banton J (2007) On the limitation of the h/v spectral ratio using seismic noise as an exploration tool: application to the grenoble valley (france), a small apex ratio basin. Pure Appl Geophys 164(1):115–134. https://doi.org/10.1007/s00024-006-0151-x

    Article  Google Scholar 

  • Harkrider DG (1964) Surface waves in multilayered elastic media, part 1. Bull Seismol Soc Am 54(2):627–679

    Google Scholar 

  • Harkrider DG (1970) Surface waves in multilayered elastic media, part 2. Bull Seismol Soc Am 60(6):1937–1987

    Google Scholar 

  • Haskell NA (1953) The dispersion of surface waves on multilayered media. Bull Seismol Soc Am 43(1):17–34

    Google Scholar 

  • He ZQ, An HS, Shen K, Lu LY, Hu G, Ye TL (2013) Detection of Puduhe fault in Yuxi basin of Yunnan by seismic reflection method. Acta Seismol Sin 35(6):836–847 (in Chinese)

    Google Scholar 

  • Hobiger M, Bard PY, Cornou C, Bihan NL (2009) Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys Res Lett 36(14):L14303

    Article  Google Scholar 

  • Horike M (1985) Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas. J Phys Earth 33(2):59–96

    Article  Google Scholar 

  • Köhler A, Ohrnberger, M., Scherbaum, F (2006) The relative fraction of Rayleigh and Love waves in ambient vibration wavefields at different European sites. In: Third international symposium on the effects of surface geology on seismic motion Grenoble, France, 30 August–1 September 2006

  • Köhler A, Ohrnberger M, Scherbaum F, Wathelet M, Cornou C (2007) Assessing the reliability of the modified three-component spatial autocorrelation technique. Geophys J Int 168(2):779–796

    Article  Google Scholar 

  • Komatitsch D, Liu Q, Tromp J, Süss P, Stidham C, Shaw JH (2004) Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bull Seismol Soc Am 94(1):187–206

    Article  Google Scholar 

  • Lachetl C, Bard PY (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. Earth Planets Space 42(5):377–397. https://doi.org/10.4294/jpe1952.42.377

    Google Scholar 

  • Lunedei E, Albarello D (2010) Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth. Geophys J Int 181(2):1342–1342

    Google Scholar 

  • Lunedei E, Malischewsky P (2015) A review and some new issues on the theory of the H/V technique for ambient vibrations. Perspectives on european earthquake engineering and seismology. Springer, New York, pp 371–394

    Google Scholar 

  • Malischewsky PG, Scherbaum F (2004) Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion 40:57–67

    Article  Google Scholar 

  • Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremor (part 2). J Seismol Soc Jpn 24(1):26–40

    Google Scholar 

  • Özalaybey S, Zor E, Ergintav S, Tapırdamaz MC (2011) Investigation of 3-d basin structures in the İzmit bay area (turkey) by single-station microtremor and gravimetric methods. Geophys J Int 186(2):883–894

    Article  Google Scholar 

  • Parolai S, Picozzi M, Richwalski SM, Milkereit C (2005) Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophys Res Lett 32(1):67–100. https://doi.org/10.1029/2004GL021115

    Article  Google Scholar 

  • Picozzi M, Parolai S, Richwalski SM (2005) Joint inversion of H/V ratios and dispersion curves from seismic noise: estimating the S-wave velocity of bedrock. Geophys Res Lett 32(11):339–357. https://doi.org/10.1029/2005GL022878

    Article  Google Scholar 

  • Piña-Flores J, Perton M, Garcíajerez A, Carmona E, Luzon F, Molina-Villegas JC, S´anchez-Sesma FJ (2017) The inversion of spectral ratio H/V in a layered system using the diffuse field assumption. Geophys J Int 208:577–588

    Article  Google Scholar 

  • Rhie J, Dreger D (2009) A simple method for simulating microseism H/V spectral ratio in 3D structure. Geosci J 13(4):401–406. https://doi.org/10.1007/s12303-009-0036-y

    Article  Google Scholar 

  • Rong MS, Wang ZM, Woolery EW, Lyu YJ, Li XJ, Li SY (2016) Nonlinear site response from the strong ground-motion recordings in western China. Soil Dyn Earthq Eng 82(4):99–110

    Article  Google Scholar 

  • Sánchez-Sesma FJ, Rodríguez M, Iturrarán-Viveros U, Luzón F, Campillo M, Margerin L, García-Jerez A, Suarez M, Santoyo MA, Rodríguez-Castellanos A (2011) A theory for microtremor H/V spectral ratio: application for a layered medium. Geophys J Int 186(1):221–225. https://doi.org/10.1111/j.1365-246X.2011.05064.x

    Article  Google Scholar 

  • Satoh T, Kawase H, Iwata T, Higashi S, Sato T, Irikura K, Huang HC (2001) S-wave velocity structure of the Taichung basin, Taiwan, estimated from array and single-station records of microtremors. Bull Seismol Soc Am 91(5):1267–1282

    Article  Google Scholar 

  • Seht IV, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. Bull Seismol Soc Am 89(1):250–259

    Google Scholar 

  • Shani-Kadmiel S, Tsesarsky M, Louie JN, Gvirtzman Z (2012) Simulation of seismic-wave propagation through geometrically complex basins: the dead sea basin. Bull Seismol Soc Am 102(4):1729–1739

    Article  Google Scholar 

  • Tamura S (1996) Comparison of body and Rayleigh wave displacements generated by a vertical point force on a layered elastic medium. In the 11th World conference on earthquake engineering, Acapulco, Mexico, 23–28 June 1996

  • Tsuboi S, Saito M (1983) Partial derivatives of Rayleigh wave particle motion. Earth Planets Space 31(2):103–113

    Google Scholar 

  • Uebayashi H (2003) Extrapolation of irregular subsurface structures using the horizontal-to-vertical spectral ratio of long-period microtremors. Bull Seismol Soc Am 93(2):570–582

    Article  Google Scholar 

  • Uebayashi H, Kawabe H, Kamae K (2012) Reproduction of microseism H/V spectral features using a three-dimensional complex topographical model of the sediment-bedrock, interface in the Osaka sedimentary basin. Geophys J Int 189(2):1060–1074. https://doi.org/10.1111/j.1365-246X.2012.05408.x

    Article  Google Scholar 

  • Wu CF, Huang HC (2012) Estimation of shallow S -wave velocity structure in the Puli basin, Taiwan, using array measurements of microtremors. Earth Planets Space 64(5):389–403. https://doi.org/10.5047/eps.2011.12.002

    Article  Google Scholar 

  • Yamanaka H, Takemura M, Ishida H, Niwa M (1994) Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers. Bull Seismol Soc Am 84(6):1831–1841

    Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (Nos. 51278470, 51678537) and the Key Laboratory of Seismic Observation and Geophysical Imaging Project. The microtremor records were obtained from the China Seismic Array at http://www.chinaarray.org. The authors thank the anonymous referees for their comments, which contributed to improving the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, X., Gao, M. et al. Simulation of the microtremor H/V spectrum based on the theory of surface wave propagation in a layered half-space. Acta Geophys. 66, 121–130 (2018). https://doi.org/10.1007/s11600-018-0112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-018-0112-7

Keywords

Navigation