Skip to main content
Log in

Hydrodynamic and seismic response to teleseismic waves of strong remote earthquakes in Caucasus

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The aim of this paper was to analyze the hydroseismic response of water level in boreholes during the passage of wave trains of remote strong earthquakes and the pattern of local seismic events, dynamically triggered by these earthquakes. As the exact type of forcing (certain phase of wave train) can be identified, the interpretation of hydroseismic effects is more straightforward and could render new important information on hydroseismic processes and, possibly, on the local stress state in a given block of the Earth crust. We tried to find out which parameter of the teleseismic wave dominates the hydroseismic response (susceptibility)—epicentral distance or velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Batzle M, Han D-H, Hofmann R (2006) Fluid mobility and frequency-dependent seismic velocity—Direct measurements. Geophysics 71(1):1–9. https://doi.org/10.1190/1.2159053

    Article  Google Scholar 

  • Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498

    Article  Google Scholar 

  • Bormann P (ed) (2012) New Manual of Seismological Observatory Practice (NMSOP-2), IASPEI, GFZ German Research Centre for Geosciences, Potsdam. http://nmsop.gfz-potsdam.de

  • Brodsky E, Roeloffs E, Woodcock D, Gall I, Manga M (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J Geophys Res. https://doi.org/10.1029/2002JB002321

    Article  Google Scholar 

  • Castro R, Gonzales-Huizar H, Wong V, Velasco A, Zuniga F (2015) Delayed dynamic triggered seismicity in northern Baja California, México caused by large and remote earthquakes. Bull Seismol Soc Am. https://doi.org/10.1785/0120140310

    Article  Google Scholar 

  • Chao K, Peng Z, Wu C, Tang C-C, Lin C-H (2012) Remote triggering of non-volcanic tremor around Taiwan. Geophys J Int 188:301–324. https://doi.org/10.1111/j.1365-246X.2011.05261.x

    Article  Google Scholar 

  • Chao K, Peng Z, Gonzalez-Huizar H, Aiken Ch, Enescu B, Kao H, Velasco A, Obara K, Matsuzawa T (2013) A global search for triggered tremor following the 2011 Mw 9.0 Tohoku earthquake. Bull Seismol Soc Am 103(2B):1551–1571

    Article  Google Scholar 

  • Chelidze T, Matcharashvili T, Lursmanashvili O, Varamashvili N, Zhukova N, Meparidze E (2010) Triggering and synchronization of stick-slip: experiments on spring-slider system. In: de Rubeis V et al (eds) Synchronization and Triggering: from Fracture to Earthquake Process. Springer, Heidelberg, pp 123–165

    Chapter  Google Scholar 

  • Chelidze T (2016) Underground water level/temperature response to seismic/tectonic transients: effects of poroelasticity. J Georgian Geophys Soc 19A:49–57

    Google Scholar 

  • Chelidze T, Shengelia I, Zhukova N, Matcharashvili T, Melikadze G, Kobzev G (2016) M9 Tohoku earthquake hydro- and seismic response in the Caucasus and North Turkey. Acta Geophys. https://doi.org/10.1515/acgeo-2016-0022

    Article  Google Scholar 

  • Costain J, Bollinger J (2010) Review: research results in hydroseismicity from 1987 to 2009. Bull Seismol Soc Am 100:1841–1858. https://doi.org/10.1785/0120090288

    Article  Google Scholar 

  • Dvorkin J, Nur A (1993) Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms. Geophysics 58:524–533

    Article  Google Scholar 

  • Gamkrelidze I, Giorgobiani T, Kuloshvili S, Lobzhanidze G, Shengelaia G (1998) Active deep faults map and catalogue for the territory of Georgia. Bull Georgian Acad Sci 157(1):80–85

    Google Scholar 

  • Gonzalez-Huizar H, Velasco A, Peng Zh, Castro R (2012) Remote triggered seismicity caused by the 2011, M9.0 Tohoku-Oki Japan earthquake. Geophys Res Lett. https://doi.org/10.1029/2012GL051015

    Article  Google Scholar 

  • Gueguen Y, Bouteca M (2004) Mechanics of fluid-saturated rocks. Elsevier, Amsterdam

    Google Scholar 

  • Hill D (2015) On the sensitivity of transtensional versus transpressional tectonic regimes to remote dynamic triggering by coulomb failure. Bull Seismol Soc Am 105:339–1348

    Google Scholar 

  • Hill D, Prejean S (2009) Dynamic triggering. In: Kanamori H (ed) Earthquake seismology. Elsevier, Amsterdam, pp 257–293

    Google Scholar 

  • Hill D, Peng Zh, Shelly D, Aiken Ch (2013) S-Wave Triggering of Tremor beneath the Parkfield, California, Section of the San Andreas Fault by the 2011 Tohoku, Japan, Earthquake: observations and Theory. Bull Seismol Soc Am 103:1541–1550

    Article  Google Scholar 

  • Jiang T, Peng Z, Wang W, Chen Q-F (2010) Remotely triggered seismicity in continental China following the 2008 Mw 7.9 Wenchuan earthquake. Bull Seismol Soc Am. https://doi.org/10.1785/0120090286

    Article  Google Scholar 

  • Kane DL, Kilb D, Berg AS, Martynov VG (2007) Quantifying the remote triggering capabilities of large earthquakes using data from the ANZA seismic network catalog (southern California). J Geophys Res. https://doi.org/10.1029/2006JB004714

    Article  Google Scholar 

  • Ma Y, Huang F (2017) Coseismic water level changes induced by two distant earthquakes in multiple wells of the Chinese mainland. Tectonophysics 694:57–68

    Article  Google Scholar 

  • Parsons T, Segou M, Marzocchi W (2014) The global aftershock zone. Tectonophysics 18:1–3

    Article  Google Scholar 

  • Peng Zh, Hill D, Shelly D, Aiken Ch (2010a) Remotely triggered microearthquakes and tremor in central California

  • Peng Zh, Wang W, Chen Q-F, Jiang T (2010) Remotely triggered seismicity in north China following the 2008 Mw 7.9 Wenchuan earthquake. Earth Planets Space 62:893–898

    Article  Google Scholar 

  • Peng Zh, Wu C, Aiken C (2011) Delayed triggering of microearthquakes by multiple surface waves circling the earth. Geophys Res Lett. https://doi.org/10.1029/2010GL046373

    Article  Google Scholar 

  • Pfohl A, Warren LM, Sit S, Brudzinski M (2015) Search for tectonic tremor on the central North Anatolian Fault. Turk Bull Seism Soc Am 105:1779–1786

    Article  Google Scholar 

  • Pimienta L, Fortin J, Borgomano J, Gueguen Y (2016) Dispersions and attenuations in a fully saturated sandstone: experimental evidence for fluid flows at different scales. Lead Edge 35(6):936–942

    Article  Google Scholar 

  • Prejean S, Hill D (2009) Dynamic triggering of earthquakes. In: Meyers A (ed) Encyclopedia of complexity and systems science. Springer, Berlin, pp 2600–2621

    Chapter  Google Scholar 

  • Shapiro S, Rothert E, Rath V, Rindschwentner J (2002) Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics 67(1):212–220

    Article  Google Scholar 

  • Van der Elst N, Brodsky E (2010) Connecting near and farfield earthquake triggering to dynamic strain. J Geophys Res. https://doi.org/10.1029/2009JB006681

    Article  Google Scholar 

  • Velasco A, Hernandes S, Parsons T, Pankow K (2008) Global ubiquity of dynamic earthquake triggering. Nat Geosci 1:375–379

    Article  Google Scholar 

  • Wang C-Y, Manga M (2010) Earthquakes and Water. Springer, Berlin

    Google Scholar 

  • Wang C-Y, Chia Y, Wang P-L, Dreger D (2009) Role of S waves and Love waves in coseismic permeability enhancement. Geophys Res Lett. https://doi.org/10.1029/2009GL037330

    Article  Google Scholar 

  • Wu C, Peng Zh, Wang W, Chen Q-F (2011) Dynamic triggering of shallow earthquakes near Beijing, China. Geophys J Int. https://doi.org/10.1111/j.1365-246x.2011.05002.x

    Article  Google Scholar 

  • Zhang Y, Huang F (2011) Mechanism of different coseismic water-level changes in wells with similar epicentral distances in intermediate field. Bull Seismol Soc Am 101:1531–1541

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shota Rustaveli National Science Foundation Grants FR/258/9-160/13, 2014 and #216732, 2017. The authors express their gratitude to the Seismic Monitoring Center of Ilia State University of Georgia, for rendering digital records.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamaz Chelidze.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelidze, T., Melikadze, G., Kobzev, G. et al. Hydrodynamic and seismic response to teleseismic waves of strong remote earthquakes in Caucasus. Acta Geophys. 67, 1–16 (2019). https://doi.org/10.1007/s11600-018-00241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-018-00241-7

Keywords

Navigation