Skip to main content
Log in

LRRK2 G2019S Mutation Inhibits Degradation of α-Synuclein in an In Vitro Model of Parkinson’s Disease

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

The G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of Parkinson’s disease (PD). However, the molecular mechanisms of LRRK2 mutation contributing to the onset and progression of PD have not been fully illustrated. We generated HEK293 cells stably transfected with α-synuclein and investigated the effect of LRRK2 G2019S mutation on the degradation of α-synuclein. The lysosomal activity was assessed by the protein degradation of glyceraldehyde-3-phosphate dehydrogenase and ribonuclease A. It was found that α-synuclein was mainly degraded in lysosomes. LRRK2 G2019S inhibited the degradation of α-synuclein, and promoted its aggregation. LRRK2 G2019S also decreased the activities of lysosomal enzymes including cathepsin B and cathepsin L. Furthermore, the inhibitory effect of LRRK2 G2019S on lysosomal functions did not depend on its kinase activity. These findings indicated that the inhibitory effect of LRRK2 G2019S on α-synuclein degradation could underlie the pathogenesis of aberrant α-synuclein aggregation in PD with LRRK2 mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ozansoy M, Basak AN. The central theme of Parkinson’s disease: alpha-synuclein. Mol Neurobiol, 2013,47(2):460–465

    Article  CAS  PubMed  Google Scholar 

  2. Luk KC, Kehm V, Carroll J, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science, 2012,338(6109):949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kachergus J, Mata IF, Hulihan M, et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet, 2005,76(4):672–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet, 2009, 18(R1):R48–59

    Article  CAS  PubMed  Google Scholar 

  5. Sepulveda B, Mesias R, Li X, et al. Short-and longterm effects of LRRK2 on axon and dendrite growth. PLoS One, 2013,8(4):e61986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wider C, Dickson DW, Wszolek ZK. Leucine-rich repeat kinase 2 gene-associated disease: redefining genotype-phenotype correlation. Neurodegener Dis, 2010, 7(1-3):175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yao C, El Khoury R, Wang W, et al. LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson’s disease. Neurobiol Dis, 2010,40(1):73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin X, Parisiadou L, Gu XL, et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alphasynuclein. Neuron, 2009,64(6):807–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Novello S, Arcuri L, Dovero S, et al. G2019S LRRK2 mutation facilitates alpha-synuclein neuropathology in aged mice. Neurobiol Dis, 2018,120:21–33

    Article  CAS  PubMed  Google Scholar 

  10. McGlinchey RP, Lee JC. Cysteine cathepsins are essential in lysosomal degradation of alpha-synuclein. Proc Natl Acad Sci USA, 2015,112(30):9322–9327

    Article  CAS  PubMed  Google Scholar 

  11. West AB, Moore DJ, Biskup S, et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA, 2005,102(46):16842–16847

    Article  CAS  PubMed  Google Scholar 

  12. Blake RA, Broome MA, Liu X, et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol, 2000,20(23):9018–9027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tofaris GK. Lysosome-dependent pathways as a unifying theme in Parkinson’s disease. Mov Disord, 2012,27(11):1364–1369

    Article  CAS  PubMed  Google Scholar 

  14. Osellame LD, Duchen MR. Defective quality control mechanisms and accumulation of damaged mitochondria link Gaucher and Parkinson diseases. Autophagy, 2013,9(10):1633–1635

    Article  CAS  PubMed  Google Scholar 

  15. Kyratzi E, Pavlaki M, Kontostavlaki D, et al. Differential effects of Parkin and its mutants on protein aggregation, the ubiquitin-proteasome system, and neuronal cell death in human neuroblastoma cells. J Neurochem, 2007,102(4):1292–1303

    Article  CAS  PubMed  Google Scholar 

  16. Gong B, Leznik E. The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect, 2007,20(6):365–370

    Article  CAS  PubMed  Google Scholar 

  17. Bennett MC, Bishop JF, Leng Y, et al. Degradation of alpha-synuclein by proteasome. J Biol Chem, 1999,274(48):33855–33858

    Article  CAS  PubMed  Google Scholar 

  18. Rideout HJ, Larsen KE, Sulzer D, et al. Proteasomal inhibition leads to formation of ubiquitin/alphasynuclein-immunoreactive inclusions in PC12 cells. J Neurochem, 2001,78(4):899–908

    Article  CAS  PubMed  Google Scholar 

  19. Cuervo AM, Stefanis L, Fredenburg R, et al. Impaired degradation of mutant alpha-synuclein by chaperonemediated autophagy. Science, 2004,305(5688):1292–1295

    Article  CAS  PubMed  Google Scholar 

  20. Zimprich A, Muller-Myhsok B, Farrer M, et al. The PARK8 locus in autosomal dominant parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. Am J Hum Genet, 2004,74(1):11–19

    Article  CAS  PubMed  Google Scholar 

  21. Hyun CH, Yoon CY, Lee HJ, et al. LRRK2 as a Potential Genetic Modifier of Synucleinopathies: Interlacing the Two Major Genetic Factors of Parkinson’s Disease. Exp Neurobiol, 2013,22(4):249–257

    Article  PubMed  PubMed Central  Google Scholar 

  22. Orenstein SJ, Kuo SH, Tasset I, et al. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci, 2013,16(4):394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-hui Zhang.

Additional information

This work was supported in part by the National Natural Science Foundation of China (NSFC) (No. 81401051, No. 81671051, and No. 81501107).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Niu, Jy., Xiong, J. et al. LRRK2 G2019S Mutation Inhibits Degradation of α-Synuclein in an In Vitro Model of Parkinson’s Disease. CURR MED SCI 38, 1012–1017 (2018). https://doi.org/10.1007/s11596-018-1977-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1977-z

Key words

Navigation