Skip to main content
Log in

Recent Advancements in Intestinal Microbiota Analyses: A Review for Non-Microbiologists

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Microbial constituents naturally inhabiting the gastrointestinal tract may influence the homeostasis of the gut environment. The presence or overabundance of some bacterial taxa has been reported to be associated with complex diseases, and the metabolites of certain bacteria may contribute to diverse disorders by influencing signaling pathways. Therefore, the study of gut microbial population has emerged as a crucial field and a new potential area of clinical significance. Advances in the methods of microbiota analysis have shed light upon the details including species diversity, microfloral activities as well as the entire gut microbiota. Nevertheless, comprehensive reviews on this subject are still limited. For elucidating the appropriate selection strategy of the methods to address a particular research question, we comprehensively reviewed the continuously improving technologies, classical to newly developed, and dissected their relative advantages and drawbacks. In addition, aiming at the rapidly advancing next-generation sequencing, we enumerated the improvements in mainstream platforms and made the horizontal and vertical comparison among them. Additionally, we demonstrated the four main -omics methods, which may provide further mechanistic insights into the role of microbiota, to propel phylotyping analysis to functional analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinhoff U. Who controls the crowd? New findings and old questions about the intestinal microflora. Immunol Lett, 2005,99(1):12–16

    Article  CAS  PubMed  Google Scholar 

  2. Human Microbiome ProjectC. A framework for human microbiome research. Nature, 2012,486(7402):215–221

    Article  CAS  Google Scholar 

  3. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature, 2012,486(7402):207–214

    Article  CAS  Google Scholar 

  4. Keates-Baleeiro J, Moore P, Koyama T, et al. Incidence and outcome of idiopathic pneumonia syndrome in pediatric stem cell transplant recipients. Bone Marrow Transplant, 2006,38(4):285–289

    Article  CAS  PubMed  Google Scholar 

  5. Sommer F, Backhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol, 2013,11(4):227–238

    Article  CAS  PubMed  Google Scholar 

  6. Clemente JC, Ursell LK, Parfrey LW, et al. The impact of the gut microbiota on human health: an integrative view. Cell, 2012,148(6):1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khanna S, Tosh PK. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc, 2014,89(1):107–114

    Article  CAS  PubMed  Google Scholar 

  8. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet, 2003,361(9356):512–519

    Article  PubMed  Google Scholar 

  9. Dinan TG, Cryan JF. The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr Opin Clin Nutr Metab Care, 2015,18(6):552–558

    Article  PubMed  Google Scholar 

  10. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012,490(7418):55–60

    Article  CAS  PubMed  Google Scholar 

  11. Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature, 2016,534(7606):213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boulange CL, Neves AL, Chilloux J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med, 2016,8(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gerritsen J, Smidt H, Rijkers GT, et al. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr, 2011,6(3):209–240

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013,155(7):1451–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hill JM, Bhattacharjee S, Pogue AI, et al. The gastrointestinal tract microbiome and potential link to Alzheimer’s disease. Front Neurol, 2014,5:43

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fraher MH, O’Toole PW and Quigley EM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol, 2012,9(6):312–322

    Article  CAS  PubMed  Google Scholar 

  17. Kuczynski J, Lauber CL, Walters WA, et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet, 2012,13(1):47–58

    Article  CAS  Google Scholar 

  18. Maron PA, Ranjard L, Mougel C, et al. Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol, 2007,53(3):486–493

    Article  CAS  PubMed  Google Scholar 

  19. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature, 2009,457(7228):480–484

    Article  CAS  PubMed  Google Scholar 

  20. Finegold SM, Attebery HR, Sutter VL. Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr, 1974,27(12):1456–1469

    Article  CAS  PubMed  Google Scholar 

  21. Gossling J, Slack JM. Predominant gram-positive bacteria in human feces: numbers, variety, and persistence. Infect Immun, 1974,9(4):719–729

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moore WE, Holdeman LV. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol, 1974,27(5):961–979

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zengler K, Toledo G, Rappe M, et al. Cultivating the uncultured. Proc Natl Acad Sci USA, 2002,99(24): 15681–15686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zengler K, Walcher M, Clark G, et al. High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol, 2005,397:124–130

    Article  CAS  PubMed  Google Scholar 

  25. Bollmann A, Lewis K, Epstein SS. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol, 2007,73(20):6386–6390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaeberlein T, Lewis K, Epstein SS. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science, 2002,296(5570):1127–1129

    Article  CAS  PubMed  Google Scholar 

  27. Ingham CJ, Sprenkels A, Bomer J, et al. The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci USA, 2007,104(46):18217–18222

    Article  PubMed  PubMed Central  Google Scholar 

  28. McDonald JA, Schroeter K, Fuentes S, et al. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J Microbiol Methods, 2013,95(2):167–174

    Article  CAS  PubMed  Google Scholar 

  29. Ma L, Kim J, Hatzenpichler R, et al. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. Proc Natl Acad Sci USA, 2014,111(27):9768–9773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science, 2005,308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lagier JC, Armougom F, Million M, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect, 2012,18(12):1185–1193

    Article  CAS  PubMed  Google Scholar 

  32. Lau JT, Whelan FJ, Herath I, et al. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med, 2016,8(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lagier JC, Million M, Hugon P, et al. Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol, 2012,2:136

    Article  PubMed  PubMed Central  Google Scholar 

  34. Clarridge JE, 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev, 2004,17(4):840–862, table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol, 1999,2(3):299–305

    Article  CAS  PubMed  Google Scholar 

  36. Lu T, Stroot PG, Oerther DB. Reverse transcription of 16S rRNA to monitor ribosome-synthesizing bacterial populations in the environment. Appl Environ Microbiol, 2009,75(13):4589–4598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olsen GJ, Lane DJ, Giovannoni SJ, et al. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol, 1986,40:337–365

    Article  CAS  PubMed  Google Scholar 

  38. von Wintzingerode F, Gobel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev, 1997,21(3):213–229

    Article  Google Scholar 

  39. Kieler IN, Molbak L, Hansen LL, et al. Overweight and the feline gut microbiome -a pilot study. J Anim Physiol Anim Nutr (Berl), 2016,100(3):478–484

    Article  CAS  Google Scholar 

  40. Radilla-Vazquez RB, Parra-Rojas I, Martinez-Hernandez NE, et al. Gut Microbiota and Metabolic Endotoxemia in Young Obese Mexican Subjects. Obes Facts, 2016,9(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut, 2013,62(4):531–539

    Article  CAS  PubMed  Google Scholar 

  42. Ponnusamy K, Choi JN, Kim J, et al. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J Med Microbiol, 2011, 60(Pt 6):817–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Obermajer T, Lipoglavsek L, Tompa G, et al. Colostrum of healthy Slovenian mothers: microbiota composition and bacteriocin gene prevalence. PLoS One, 2014, 10(4): e0123324

    Article  CAS  PubMed  Google Scholar 

  44. Riddle MS and Connor BA. The Traveling Microbiome. Curr Infect Dis Rep, 2016,18(9):29

    Article  PubMed  Google Scholar 

  45. Fischer SG, Lerman LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA, 1983,80(6):1579–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramnani P, Costabile A, Bustillo AG, et al. Arandomised, double-blind, cross-over study investigating the prebiotic effect of agave fructans in healthy human subjects. J Nutr Sci, 2015, 4:e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fischer SG, Lerman LS. Separation of random fragments of DNA according to properties of their sequences. Proc Natl Acad Sci USA, 1980,77(8):4420–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu WT, Marsh TL, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol, 1997,63(11):4516–4522

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dave M, Johnson LA, Walk ST, et al. A randomised trial of sheathed versus standard forceps for obtaining uncontaminated biopsy specimens of microbiota from the terminal ileum. Gut, 2011,60(8):1043–1049

    Article  PubMed  Google Scholar 

  50. Brooks JP, Edwards DJ, Harwich MD, Jr., et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol, 2015,15:66

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hayashi H, Sakamoto M, Kitahara M, et al. Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol, 2003,47(8):557–570

    Article  CAS  PubMed  Google Scholar 

  52. Matsumoto M, Sakamoto M, Hayashi H, et al. Novel phylogenetic assignment database for terminalrestriction fragment length polymorphism analysis of human colonic microbiota. J Microbiol Methods, 2005,61(3):305–319

    Article  CAS  PubMed  Google Scholar 

  53. Mark Welch JL, Rossetti BJ, Rieken CW, et al. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA, 2016, 113(6):E791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith PA. The tantalizing links between gut microbes and the brain. Nature, 2015,526(7573):312–314

    Article  CAS  PubMed  Google Scholar 

  55. Ingber DE. Reverse Engineering Human Pathophysiology with Organs-on-Chips. Cell, 2016,164(6):1105–1109

    Article  CAS  PubMed  Google Scholar 

  56. Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013,62(8):1112–1121

    Article  CAS  PubMed  Google Scholar 

  57. Michail S, Durbin M, Turner D, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis, 2012,18(10):1799–1808

    Article  PubMed  Google Scholar 

  58. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 1977,74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Collins FS, Morgan M and Patrinos A. The Human Genome Project: lessons from large-scale biology. Science, 2003,300(5617):286–290

    Article  CAS  PubMed  Google Scholar 

  60. Hall N. Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol, 2007, 210(Pt 9):1518–1525

    Article  CAS  PubMed  Google Scholar 

  61. de Magalhaes JP, Finch CE, Janssens G. Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev, 2010,9(3):315–323

    Article  CAS  PubMed  Google Scholar 

  62. Jeffery IB, O’Toole PW, Ohman L, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut, 2012,61(7):997–1006

    Article  PubMed  Google Scholar 

  63. Tang J, Iliev ID, Brown J, et al. Mycobiome: Approaches to analysis of intestinal fungi. J Immunol Methods, 2015,421:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet, 2016,17(6):333–351

    Article  CAS  PubMed  Google Scholar 

  65. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature, 2012,486(7402):222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jaeggi T, Kortman GA, Moretti D, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut, 2015,64(5):731–742

    Article  CAS  PubMed  Google Scholar 

  67. Olivares M, Neef A, Castillejo G, et al. The HLADQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut, 2015,64(3):406–417

    Article  CAS  PubMed  Google Scholar 

  68. Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 2010,5(2):e9085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Andersson AF, Lindberg M, Jakobsson H, et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One, 2008,3(7):e2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Turnbaugh PJ, Quince C, Faith JJ, et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci USA, 2010,107(16):7503–7508

    Article  PubMed  PubMed Central  Google Scholar 

  71. P OC, Aguirre de Carcer D, Jones M, et al. The effects from DNA extraction methods on the evaluation of microbial diversity associated with human colonic tissue. Microb Ecol, 2011,61(2):353–362

    Article  CAS  Google Scholar 

  72. Yuan S, Cohen DB, Ravel J, et al. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One, 2012,7(3):e33865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilles A, Meglecz E, Pech N, et al. Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics, 2011,12:245

    Article  PubMed  PubMed Central  Google Scholar 

  74. Luo C, Tsementzi D, Kyrpides N, et al. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One, 2012,7(2):e30087

    CAS  PubMed  Google Scholar 

  75. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol, 2007,10(5):504–509

    Article  CAS  PubMed  Google Scholar 

  76. Sanschagrin S, Yergeau E. Next-generation sequencing of 16S ribosomal RNA gene amplicons. J Vis Exp, 2014(90). doi:10.3791/51709

  77. Lagier JC, Hugon P, Khelaifia S, et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev, 2015,28(1):237–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xiong W, Abraham PE, Li Z, et al. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics, 2015,15(20):3424–3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reigstad CS, Kashyap PC. Beyond phylotyping: understanding the impact of gut microbiota on host biology. Neurogastroenterol Motil, 2013,25(5):358–372

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wang WL, Xu SY, Ren ZG, et al. Application of metagenomics in the human gut microbiome. World J Gastroenterol, 2015,21(3):803–814

    Article  PubMed  PubMed Central  Google Scholar 

  81. Staden R. A strategy of DNA sequencing employing computer programs. Nucleic Acids Res, 1979,6(7):2601–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Poinar HN, Schwarz C, Qi J, et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science, 2006,311(5759):392–394

    Article  CAS  PubMed  Google Scholar 

  83. Metzker ML. Sequencing technologies -the next generation. Nat Rev Genet, 2010,11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  84. Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease. Physiol Rev, 2010,90(3):859–904

    Article  CAS  PubMed  Google Scholar 

  85. Ranjan R, Rani A, Metwally A, et al. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun, 2016,469(4):967–977

    Article  CAS  PubMed  Google Scholar 

  86. De Vos WM. Mining the microbes—the human microbiome as model. Microb Biotechnol, 2009,2(2): 153–154

    Article  PubMed  PubMed Central  Google Scholar 

  87. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 2013,498(7452):99–103

    Article  CAS  PubMed  Google Scholar 

  88. Karlsson FH, Fak F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun, 2012,3:1245

    Article  CAS  PubMed  Google Scholar 

  89. Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med, 2015,21(8):895–905

    Article  CAS  PubMed  Google Scholar 

  90. Ma J, Prince A, Aagaard KM. Use of whole genome shotgun metagenomics: a practical guide for the microbiome-minded physician scientist. Semin Reprod Med, 2014,32(1):5–13

    Article  CAS  PubMed  Google Scholar 

  91. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009,10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol, 2012,10(9):618–630

    Article  CAS  PubMed  Google Scholar 

  93. Bashiardes S, Zilberman-Schapira G, Elinav E. Use of Metatranscriptomics in Microbiome Research. Bioinform Biol Insights, 2016,10:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Franzosa EA, Morgan XC, Segata N, et al. Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci USA, 2014, 111(22):E2329–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gosalbes MJ, Durban A, Pignatelli M, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One, 2011,6(3):e17447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peano C, Pietrelli A, Consolandi C, et al. An efficient rRNA removal method for RNA sequencing in GC-rich bacteria. Microb Inform Exp, 2013,3(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol, 2011,77(4):1153–1161

    Article  CAS  PubMed  Google Scholar 

  98. Alves P, Arnold RJ, Novotny MV, et al. Advancement in protein inference from shotgun proteomics using peptide detectability. Pac Symp Biocomput, 2007:409–420

    Google Scholar 

  99. Hu L, Ye M, Jiang X, et al. Advances in hyphenated analytical techniques for shotgun proteome and peptidome analysis—a review. Anal Chim Acta, 2007,598(2):193–204

    Article  CAS  PubMed  Google Scholar 

  100. Jordan KW, Nordenstam J, Lauwers GY, et al. Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum, 2009,52(3):520–525

    Article  PubMed  PubMed Central  Google Scholar 

  101. Aldridge BB, Rhee KY. Microbial metabolomics: innovation, application, insight. Curr Opin Microbiol, 2014,19:90–96

    Article  CAS  PubMed  Google Scholar 

  102. Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol, 2016,7:1144

    Article  PubMed  PubMed Central  Google Scholar 

  103. Aguiar-Pulido V, Huang W, Suarez-Ulloa V, et al. Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis. Evol Bioinform Online, 2016, 12(Suppl 1):5–16

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Xw., Ding, Wp., Xiong, Ly. et al. Recent Advancements in Intestinal Microbiota Analyses: A Review for Non-Microbiologists. CURR MED SCI 38, 949–961 (2018). https://doi.org/10.1007/s11596-018-1969-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1969-z

Key words

Navigation