Skip to main content
Log in

Summary

Many studies have reported the relationship between CXCL12 G801A polymorphism and cancer risk, with conflicting results. In this study, we tried to clarify the possibility that this polymorphism may increase cancer risk by conducting an updated meta-analysis. PubMed and EMbase were searched for case-control studies regarding the association of the gene polymorphism and cancer risk. Data were extracted and odds ratios (ORs) with 95% confidence intervals (95% CIs) were used to assess the strength of the association. Heterogeneity among articles and publication bias was also assessed. Significantly increased risk for cancer was found (A vs. G: OR=1.26, 95% CI=1.13–1.40, P<0.01; AA+AG vs. GG: OR=1.33, 95% CI=1.16–1.52, P<0.01). In subgroup analysis, statistically elevated cancer risk was found in both Asian and Caucasian populations (for Asian, AA+AG vs. GG: OR=1.74, 95% CI=1.22–2.47, P<0.01; for Caucasian, AA+AG vs. GG: OR=1.24, 95% CI=1.09–1.42, P<0.01). Our result indicated that CXCL12 G801A polymorphism is a risk factor for cancer. To validate the finding, further large-size case-control studies are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrew AS, Nelson HH, Kelsey KT, et al. Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis, 2006,27(5):1030–1037

    Article  CAS  PubMed  Google Scholar 

  2. Pharoah PD, Dunning AM, Ponder BA, et al. Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer, 2004,4(11):850–860

    Article  CAS  PubMed  Google Scholar 

  3. Domanska UM, Kruizinga RC, Nagengast WB, et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer, 2013,499(1):219–230

    Article  Google Scholar 

  4. Shirozu M, Nakano T, Inazawa J, et al. Structure and chromosomal localization of the human stromal cell-derived factor-1 (SDF1) gene. Genomics, 1995,28(3):495–500

    Article  CAS  PubMed  Google Scholar 

  5. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001,410(6824):50–56

    Article  CAS  PubMed  Google Scholar 

  6. Yun HJ, Jo DY. Production of stromal cell-derived factor-1 (SDF-1) and expression of CXCR4 in human bone marrow endothelial cells. J Korean Med Sci, 2003, 18(5):679–685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 1996,382(6592):635–638

    Article  CAS  PubMed  Google Scholar 

  8. Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996,382(6594):829–833

    Article  CAS  PubMed  Google Scholar 

  9. Soriano A, Martinez C, Garcia F, et al. Plasma stromal cell-derived factor (SDF)-1 levels, SDF1-3’A genotype, and expression of CXCR4 on T lymphocytes: their impact on resistance to human immunodeficiency virus type1 infection and its progression. J Infect Dis, 2002, 186(7):922–931

    Article  CAS  PubMed  Google Scholar 

  10. Hirata H, Hinoda Y, Kikuno N, et al. CXCL12 G801A polymorphism is a risk factor for sporadic prostate cancer susceptibility. Clin Cancer Res, 2007,13(17):5056–5062

    Article  CAS  PubMed  Google Scholar 

  11. Uchida D, Begum N-M, Tomizuka Y, et al. Acquisition of lymph node, but not distant metastatic potentials, by the overexpression of CXCR4 in human oral squamous cell carcinoma. Lab Invest, 2004,84(12):1538–1546

    Article  CAS  PubMed  Google Scholar 

  12. Razmkhah M, Doroudchi M, Ghayumi SM, et al. Stromal cell-derived factor-1 (SDF-1) gene and susceptibility of Iranian patients with lung cancer. Lung Cancer, 2005, 49(3):311–315

    Article  PubMed  Google Scholar 

  13. Razmkhah M, Talei AR, Doroudchi M, et al. Stromal cell-derived factor-1 (SDF-1) alleles and susceptibility to breast carcinoma. Cancer Lett, 2005,225(2):261–266

    Article  CAS  PubMed  Google Scholar 

  14. de Oliveira CE, Cavassin GG, Perim-Ade L, et al. Stromal cell-derived factor-1 chemokine gene variant in blood donors and chronic myelogenous leukemia patients. J Clin Lab Anal, 2007,21(1):49–54

    Article  PubMed  Google Scholar 

  15. de Oliveira-Cavassin GG, De Lucca FL, Delgado-André N, et al. Molecular investigation of the stromal cell derived factor-1 chemokine in lymphoid leukemia and lymphoma patients from Brazil. Blood Cells Mol Dis, 2004,33(1): 90–93

    Article  PubMed  Google Scholar 

  16. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials, 1986,7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  17. Mantel, N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 1959,22(4):719–748

    CAS  PubMed  Google Scholar 

  18. Moosavi SR, Khorramdelazad H, Amin M, et al. The SDF-1 3’A genetic variation is correlated with elevated intratumor tissue and circulating concentration of CXCL12 in glial tumors: a study on Iranian anaplastic astrocytoma and glioblastoma multiforme patients. J Mol Neurosci, 2013,50(2):298–304

    Article  CAS  PubMed  Google Scholar 

  19. Teng YH, Liu TH, Tseng HC, et al. Contribution of genetic polymorphisms of stromal cell-derived factor-1 and its receptor, CXCR4, to the susceptibility and clinicopathologic development of oral cancer. Head Neck, 2009,31(10):1282–1288

    Article  PubMed  Google Scholar 

  20. Chang CC, Chen SC, Hsieh YH, et al. Stromal cell-derived factor-1 but not its receptor, CXCR4, gene variants increase susceptibility and pathological developpment of hepatocellular carcinoma. Clin Chem Lab Med, 2009,47(4):412–418

    Article  CAS  PubMed  Google Scholar 

  21. Theodoropoulos GE, Panoussopoulos GS, Michalopoulos NV, et al. Analysis of the stromal cell-derived factor 1-3’A gene polymorphism in pancreatic cancer. Mol Med Rep, 2010,3(4):693–698

    CAS  PubMed  Google Scholar 

  22. Mazur G, Gebura K, Gieryng A, et al. The CXCL12-3’A allele plays a favourable role in patients with multiple myeloma. Cytokine, 2013,64(1):422–426

    Article  CAS  PubMed  Google Scholar 

  23. Gawron AJ, Fought AJ, Lissowska J, et al. Polymorphisms in chemokine and receptor genes and gastric cancer risk and survival in a high risk Polish population. Scand J Gastroenterol, 2011,46(3):333–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Maley SN, Schwartz SM, Johnson LG, et al. Genetic variation in CXCL12 and risk of cervical carcinoma: a population-based case-control study. Int J Immunogenet, 2009,36(6):367–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Enjuanes A, Benavente Y, Bosch F, et al. Genetic variants in apoptosis and immunoregulation-related genes are associated with risk of chronic lymphocytic leukemia. Cancer Res, 2008,68(24):10178–10186

    Article  CAS  PubMed  Google Scholar 

  26. Dommange F, Cartron G, Espanel C, et al. CXCL12 polymorphism and malignant cell dissemination/tissue infiltration in acute myeloid leukemia. FASEB J, 2006,20(11):1913–1915

    Article  CAS  PubMed  Google Scholar 

  27. Kwon EM, Salinas CA, Kolb S, et al. Genetic polymorphisms in inflammation pathway genes and prostate cancer risk. Cancer Epidemiol Biomarkers Prev, 2011,20(5):923–933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Cai C, Wang LH, Dong Q, et al. Association of CXCL12 and CXCR4 gene polymorphisms with the susceptibility and prognosis of renal cell carcinoma. Tissue Antigens, 2013,82(3):165–170

    Article  CAS  PubMed  Google Scholar 

  29. Lee YL, Kuo WH, Lin CW, et al. Association of genetic polymorphisms of CXCL12/SDF1 gene and its receptor, CXCR4, to the susceptibility and prognosis of non-small cell lung cancer. Lung Cancer, 2011,73(2):147–152

    Article  PubMed  Google Scholar 

  30. Lin GT, Tseng HF, Yang CH, et al. Combinational polymorphisms of seven CXCL12-related genes are protective against breast cancer in Taiwan. OMICS, 2009,13(2):165–172

    Article  CAS  PubMed  Google Scholar 

  31. Shi MD, Chen JH, Sung HT, et al. CXCL12-G801A polymorphism modulates risk of colorectal cancer in Taiwan. Arch Med Sci, 2013,9(6):999–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tee YT, Yang SF, Wang PH, et al. G801A polymorphism of human stromal cell-derived factor1 gene raises no susceptibility to neoplastic lesions of uterine cervix. Int J Gynecol Cancer, 2012,22(8):1297–1302

    Article  PubMed  Google Scholar 

  33. Liu W, Zhu E, Wang R, et al. CXCL12 G801A polymorphism is associated with an increased risk of benign salivary gland tumors in the Chinese population. Med Oncol, 2012,29(2):677–681

    Article  PubMed  Google Scholar 

  34. Vairaktaris E, Vylliotis A, Spyridonodou S, et al. A DNA polymorphism of stromal-derived factor-1 is associated with advanced stages of oral cancer. Anticancer Res, 2008,28(1A):271–275

    CAS  PubMed  Google Scholar 

  35. Hidalgo-Pascual M, Galan JJ, Chaves-Conde M, et al. Analysis of CXCL12 3’UTR G>A polymorphism in colorectal cancer. Oncol Rep, 2007,18(6):1583–1587

    CAS  PubMed  Google Scholar 

  36. Isman FK, Kucukgergin C, Dasdemir S, et al. Association between SDF1-3’A or CXCR4 gene polymorphisms with predisposition to and clinicopathological characteristics of prostate cancer with or without metastases. Mol Biol Rep, 2012,39(12):11073–11079

    Article  CAS  PubMed  Google Scholar 

  37. Ben-Nasr M, Reguaya Z, Berraies L, et al. Association of stromal cell-derived factor-1-3’A polymorphism to higher mobilization of hematopoietic stem cells CD34+ in Tunisian population. Transplant Proc, 2011,43(2):635–638

    Article  CAS  PubMed  Google Scholar 

  38. Bracci PM, Skibola CF, Conde L, et al. Chemokine polymorphisms and lymphoma: a pooled analysis. Leuk Lymphoma, 2010,51(3):497–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. de Oliveira KB, Guembarovski RL, Oda JM, et al. CXCL12 rs1801157 polymorphism and expression in peripheral blood from breast cancer patients. Cytokine, 2011,55(2):260–265

    Article  PubMed  Google Scholar 

  40. de Oliveira KB, Oda JM, Voltarelli JC, et al. CXCL12 rs1801157 polymorphism in patients with breast cancer, Hodgkin’s lymphoma, and non-Hodgkin’s lymphoma. J Clin Lab Anal, 2009,23(6):387–393

    Article  PubMed  Google Scholar 

  41. Kruszyna L, Lianeri M, Rydzanicz M, et al. SDF1-3’ a gene polymorphism is associated with laryngeal cancer. Pathol Oncol Res, 2010,16(2):223–227

    Article  CAS  PubMed  Google Scholar 

  42. Kruszyna L, Lianeri M, Rubis B, et al. CXCL12-3’ G801A polymorphism is not a risk factor for breast cancer. DNA Cell Biol, 2010,29(8):423–427

    Article  CAS  PubMed  Google Scholar 

  43. Vázquez-Lavista LG, Lima G, Gabilondo F, et al. Genetic association of monocyte chemoattractant protein-1 (MCP-1)-2518 polymorphism in Mexican patients with transitional cell carcinoma of the bladder. Urology, 2009,74(2):414–418

    Article  PubMed  Google Scholar 

  44. Cacina C, Bulgurcuoglu-Kuran S, Iyibozkurt AC, et al. Genetic variants of SDF-1 and CXCR4 genes in endometrial carcinoma. Mol Biol Rep, 2012,39(2):1225–1229

    Article  CAS  PubMed  Google Scholar 

  45. Dimberg J, Hugander A, Löfgren S, et al. Polymorphism and circulating levels of the chemokine CXCL12 in colorectal cancer patients. Int J Mol Med, 2007,19(1):11–15

    CAS  PubMed  Google Scholar 

  46. Razmkhah M, Ghaderi A. SDF-1alpha G801A polymorphism in Southern Iranian patients with colorectal and gastric cancers. Indian J Gastroenterol, 2013,32(1):28–31

    Article  PubMed  Google Scholar 

  47. Zafiropoulos A, Crikas N, Passam A, et al. Significant involvement of CCR2-64I and CXCL12-3a in the development of sporadic breast cancer. J Med Genet, 2004,41(5):e59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kucukgergin C, Isman FK, Dasdemir S, et al. The role of chemokine and chemokine receptor gene variants on the susceptibility and clinicopathological characteristics of bladder cancer. Gene, 2012,511(1):7–11

    Article  CAS  PubMed  Google Scholar 

  49. de Lourdes-Perim A, Guembarovski RL, Oda JM, et al. CXCL12 and TP53 genetic polymorphisms as markers of susceptibility in a Brazilian children population with acute lymphoblastic leukemia (ALL). Mol Biol Rep, 2013,40(7):4591–4596

    Article  CAS  PubMed  Google Scholar 

  50. Khademi B, Razmkhah M, Erfani N, et al. SDF-1 and CCR5 genes polymorphism in patients with head and neck cancer. Pathol Oncol Res, 2008,14(1):45–50

    Article  CAS  PubMed  Google Scholar 

  51. Kontogianni P, Zambirinis CP, Theodoropoulos G, et al. The impact of the stromal cell-derived factor-1-3’A and E-selectin S128R polymorphisms on breast cancer. Mol Biol Rep, 2013,40(1):43–50

    Article  CAS  PubMed  Google Scholar 

  52. Liarmakopoulos E, Theodoropoulos G, Vaiopoulou A, et al. Effects of stromal cell-derived factor-1 and survivin gene polymorphisms on gastric cancer risk. Mol Med Rep, 2013,7(3):887–892

    CAS  PubMed  Google Scholar 

  53. Winkler C, Modi W, Smith MW, et al. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science, 1998,279 (5349):389–393

    Article  CAS  PubMed  Google Scholar 

  54. Caruz A, Samsom M, Alonso JM, et al. Genomic organization and promoter characterization of human CXCR4 gene. FEBS Lett, 1998,426(2):271–278

    Article  CAS  PubMed  Google Scholar 

  55. McGrath KE, Koniski AD, Maltby KM, et al. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol, 1999,213(2):442–456

    Article  CAS  PubMed  Google Scholar 

  56. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 2006,107(5):1761–1767

    Article  CAS  PubMed  Google Scholar 

  57. Ma XY, Jin Y, Sun HM, et al. CXCL12 G801A polymorphism contributes to cancer susceptibility: a meta-analysis. Cell Mol Biol(Noisy-le-grand), 2012,58 (suppl):OL1702–OL1708

    CAS  Google Scholar 

  58. Gong H, Tan M, Wang Y, et al. CXCL12 G801A polymorphism and cancer risk: evidence from-17 case-control studies. Gene, 2012,509(2):228–231

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-yun Xu  (许淑云).

Additional information

This project was supported by grants from the National Natural Science Foundation of China (No. 81371939 and No. 81370134), Natural Science Foundation of Hubei Province, China (No. 2012FFB02422), and Wuhan Municipal Science and Technology Bureau, China (No. 2014060101010035).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, D., Wu, Yx., Heerah, V. et al. CXCL12 G801A polymorphism and cancer risk: An updated meta-analysis. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 35, 319–326 (2015). https://doi.org/10.1007/s11596-015-1431-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-015-1431-4

Key words

Navigation