Skip to main content
Log in

Interleukin (IL)-4 induces production of cytokine-induced neutrophil chemoattractants (CINCs) and intercellular adhesion molecule (ICAM)-1 in lungs of asthmatic rats

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The present study aimed to examine the effect of interleukin (IL)-4 on neutrophil chemotaxis in airway inflammation in asthmatic rats and the possible mechanism. Male Wistar rats were intranasally instilled with recombinant rat (rr) IL-4 (rrIL-4) at different doses [2, 4 or 8 μg/animal, dissolved in 200 μL normal saline (NS)] or rrIL-4 at 4 μg/animal (dissolved in 200 μL NS). NS (200 μL) and LPS (6 mg/kg/animal, dissolved in 200 μL NS) were intranasally given respectively in the negative and positive control groups. Moreover, the asthmatic lung inflammation was induced in rats which were then intranasally treated with rrIL-4 (4 μg/animal) or LPS (6 mg/kg/animal). The normal rats treated with different doses of rrIL-4 and those asthmatic rats were sacrificed 6 h later. And animals instilled with rrIL-4 at 4 μg were sacrificed 6, 12 or 24 h later. The bronchoalveolar lavage fluid (BALF) and lungs were harvested for detection of leukocyte counts by Wright-Giemsa staining and lung histopathology by haematoxylin-eosin (HE) staining. The levels of cytokine-induced neutrophil chemoattractant (CINC)-1 and intercellular adhesion molecule (ICAM)-1 in BALF were determined by ELISA. Real-time PCR was used to measure the mRNA expression of CINCs (CINC-1, CINC-2α, CINC-2β, CINC-3) and ICAM-1 in lung tissues. The results showed that the intranasal instillation of IL-4 did not induce a recruitment of neutrophils in BALF in rats. However, IL-4 could increase the CINC-1 level in BALF in a dose-dependent manner at 6 h. But the mRNA expression levels of CINC-1, CINC-2α, CINC-2β, CINC-3 were not significantly increased in lungs of IL-4-treated rats relative to NS negative control group. Moreover, IL-4 was found to augment the mRNA expression of ICAM-1 in lungs and the ICAM-1 level in BALF at 6 h. However, the increase in CINC-1 and ICAM-1 levels in BALF of IL-4-treated asthmatic rats was not significantly different from that in untreated asthmatic rats. These findings indicate that IL-4 does not directly recruit neutrophils in the rat lungs, but it may contribute to airway neutrophilia through up-regulation of CINC-1 and ICAM-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kon OM, Kay AB. T cells and chronic asthma. Int Arch Allergy Immunol, 1999,118(2–4):133–135

    Article  PubMed  CAS  Google Scholar 

  2. Kay AB. T lymphocytes and their products in atopic allergy and asthma. Int Arch Allergy Appl Immunol, 1991,94(1–4):189–193

    Article  PubMed  CAS  Google Scholar 

  3. Taube C, Dakhama A, Gelfand EW. Insights into the pathogenesis of asthma utilizing murine models. Int Arch Allerg Immun, 2004,135(2):173–186

    Article  Google Scholar 

  4. Chatila TA. Interleukin-4 receptor signaling pathways in asthma pathogenesis. Trends Mol Med, 2004,10(10):493–499

    Article  PubMed  CAS  Google Scholar 

  5. Sur S, Crotty TB, Kephart GM, et al. Sudden-onset fatal asthma. A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am Rev Respir Dis, 1993,148(3):713–719

    CAS  Google Scholar 

  6. Norzila MZ, Fakes K, Henry RL, et al. Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am J Respir Crit Care Med, 2000,161(3 Pt 1):769–774

    Article  PubMed  CAS  Google Scholar 

  7. Fahy JV, Kim KW, Liu J, et al. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol, 1995,95(4):843–852

    Article  PubMed  CAS  Google Scholar 

  8. Lamblin C, Gosset P, Tillie-Leblond I, et al. Bronchial neutrophilia in patients with noninfectious status asthmaticus. Am J Respir Crit Care Med, 1998,157(2):394–402

    Article  PubMed  CAS  Google Scholar 

  9. Turner MO, Hussack P, Sears MR, et al. Exacerbations of asthma without sputum eosinophilia. Thorax, 1995,50(10):1057–1061

    Article  PubMed  CAS  Google Scholar 

  10. Mukaida N, Harada A, Matsushima K. Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine Growth Factor Rev, 1998,9(1):9–23

    Article  PubMed  CAS  Google Scholar 

  11. Wagner JG, Roth RA. Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol Rev, 2000,52(3):349–374

    PubMed  CAS  Google Scholar 

  12. Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol, 2005,7(2):122–133

    Article  PubMed  CAS  Google Scholar 

  13. Li A, Dubey S, Varney ML, et al. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol, 2003,170(6):3369–3376

    PubMed  CAS  Google Scholar 

  14. Lee KS, Jin SM, Kim HJ, et al. Matrix metalloproteinase inhibitor regulates inflammatory cell migration by reducing ICAM-1 and VCAM-1 expression in a murine model of toluene diisocyanate-induced asthma. J Allergy Clin Immunol, 2003,111(6):1278–1284

    Article  PubMed  CAS  Google Scholar 

  15. Gueders MM, Balbin M, Rocks N, et al. Matrix metalloproteinase-8 deficiency promotes granulocytic allergen-induced airway inflammation. J Immunol, 2005,175(4):2589–2597

    PubMed  CAS  Google Scholar 

  16. Ohbayashi H. Matrix metalloproteinases in lung diseases. Curr Protein Pept Sci, 2002,3(4):409–421

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki R, Miyazaki Y, Takagi K, et al. Matrix metalloproteinases in the pathogenesis of asthma and COPD: Implications for therapy. Treat Respir Med, 2004,3(1):17–27

    Article  PubMed  CAS  Google Scholar 

  18. Nishina K. Expression of CINC-2 is related to the state of differentiation of alveolar epithelial cells. Am J Respir Cell Mol Biol, 2005,33(5):505–512

    Article  PubMed  CAS  Google Scholar 

  19. Shibata F, Kato H, Konishi K, et al. Differential changes in the concentrations of cytokine induced neutrophil chemoattractant (CINC)-1 and CINC-2 in exudate during rat lipopolysaccharide-induced inflammation. Cytokine, 1996,8(3):222–226

    Article  PubMed  CAS  Google Scholar 

  20. Shibata F. Identification of a common receptor for three types of rat cytokine-induced neutrophil chemoattractants (CINCs). Cytokine, 2000,12(9):1368–1373

    Article  PubMed  CAS  Google Scholar 

  21. Green CE, Pearson DN, Camphausen RT, et al. Shear-dependent capping of L-selectin and P-selectin glycoprotein ligand 1 by E-selectin signals activation of high-avidity beta2-integrin on neutrophils. J Immunol, 2004,172(12):7780–7790

    PubMed  CAS  Google Scholar 

  22. McEver RP, Zhu C. A catch to integrin activation. Nat Immunol, 2007,8(10):1035–1037

    Article  PubMed  CAS  Google Scholar 

  23. Chan SC, Shum DK, Tipoe GL, et al. Upregulation of ICAM-1 expression in bronchial epithelial cells by airway secretions in bronchiectasis. Respir Med, 2008,102(2):287–298

    Article  PubMed  Google Scholar 

  24. Striz I, Mio T, Adachi Y, et al. IL-4 induces ICAM-1 expression in human bronchial epithelial cells and potentiates TNF-alpha. Am J Physiol, 1999,277(1 Pt 1):L58–L64

    PubMed  CAS  Google Scholar 

  25. Huang H, Lavoie-Lamoureux A, Moran K, et al. IL-4 stimulates the expression of CXCL-8, E-selectin, VEGF, and inducible nitric oxide synthase mRNA by equine pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol, 2007,292(5):L1147–L1154

    Article  PubMed  CAS  Google Scholar 

  26. Yang DF, Huang H, Guan S, et al. Interleukin(IL)-4 promotion of CXCL-8 gene transcription is mediated by ERK1/2 pathway in human pulmonary artery endothelial cells. Mol Immunol, 2011,48(15–16):1784–1792

    Article  PubMed  CAS  Google Scholar 

  27. Zhang C, Ge CL, Guo RX, et al. Effect of IL-4 on altered expression of complement activation regulators in rat pancreatic cells during severe acute pancreatitis. World J Gastroenterol, 2005,11(43):6770–6774

    PubMed  CAS  Google Scholar 

  28. Ratthé C, Ennaciri J, Garcês Gonçalves DM, et al. Interleukin (IL)-4 induces leukocyte infiltration in vivo by an indirect mechanism. Mediators Inflamm, 2009,2009:1–10

    Article  Google Scholar 

  29. Kang JL, Lee HW, Lee HS, et al. Genistein prevents nuclear factor-kappa B activation and acute lung injury induced by lipopolysaccharide. Am J Respir Crit Care Med, 2001,164(12):2206–2212

    Article  PubMed  CAS  Google Scholar 

  30. Rabb HA, Olivenstein R, Issekutz TB, et al. The role of the leukocyte adhesion molecules VLA-4, LFA-1, and MAC-1 in allergic airway responses in the rat. Am J Respir Crit Care Med, 1994,149(5):1186–1191

    Article  PubMed  CAS  Google Scholar 

  31. Livak K Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  32. Niiro H, Otsuka T, Izuhara K, et al. Regulation by interleukin-10 and interleukin-4 of cyclooxygenase-2 expression in human neutrophils. Blood, 1997,89(5):1621–1628

    PubMed  CAS  Google Scholar 

  33. Marie C, Pitton C, Fitting C, et al. IL-10 and IL-4 synergize with TNF-alpha to induce IL-1ra production by human neutrophils. Cytokine, 1996,8(2):147–151

    Article  PubMed  CAS  Google Scholar 

  34. Colotta F, Re F, Muzio M, et al. Interleukin-1 type II receptor: A decoy target for IL-1 that is regulated by IL-4. Science, 1993,261(5120):472–475

    Article  PubMed  CAS  Google Scholar 

  35. Masinovsky B, Urdal D, Gallatin WM. IL-4 acts synergistically with IL-1 beta to promote lymphocyte adhesion to microvascular endothelium by induction of vascular cell adhesion molecule-1. J Immunol, 1990,145(9):2886–2895

    PubMed  CAS  Google Scholar 

  36. Dubois GR, Bruijnzeel PL IL-4-induced migration of eosinophils in allergic inflammation. Ann N Y Acad Sci, 1994,725:268–273

    Article  PubMed  CAS  Google Scholar 

  37. Hiester AA, Metcalf DR, Campbell PA. Interleukin-4 is chemotactic for mouse macrophages. Cell Immunol, 1992,139(1):72–80

    Article  PubMed  CAS  Google Scholar 

  38. Clinchy B, Elenstrom C, Severinson E, et al. T and B cell collaboration: Induction of motility in small, resting B cells by interleukin 4. Eur J Immunol, 1991,21(6):1445–1451

    Article  PubMed  CAS  Google Scholar 

  39. Boey H, Rosenbaum R, Castracane J, et al. Interleukin-4 is a neutrophil activator. J Allergy Clin Immunol, 1989,83(5):978–984

    Article  PubMed  CAS  Google Scholar 

  40. Lavoie-Lamoureux A, Moran K, Beauchamp G, et al. IL-4 activates equine neutrophils and induces a mixed inflammatory cytokine expression profile with enhanced neutrophil chemotactic mediator release ex vivo. Am J Physiol Lung Cell Mol Physiol, 2010,299(4):L472–L482

    Article  PubMed  CAS  Google Scholar 

  41. Mulligan MS, Jones ML, Vaporciyan AA, et al. Protective effects of IL-4 and IL-10 against immune complex-induced lung injury. J Immunol, 1993,151(10):5666–5674

    PubMed  CAS  Google Scholar 

  42. Perretti M, Szabo C, Thiemermann C. Effect of inter leukin-4 and interleukin-10 on leucocyte migration and nitric oxide production in the mouse. Br J Pharmacol, 1995,116(4):2251–2257

    Article  PubMed  CAS  Google Scholar 

  43. Piela-Smith TH, Broketa G, Hand A, et al. Regulation of ICAM-1 expression and function in human dermal fibroblasts by IL-4. J Immunol, 1992,148(5):1375–1381

    PubMed  CAS  Google Scholar 

  44. Obiri NI, Tandon N, Puri RK. Up-regulation of intercellular adhesion molecule 1 (ICAM-1) on human renal cell carcinoma cells by interleukin-4. Int J Cancer, 1995,61(5):635–642

    Article  PubMed  CAS  Google Scholar 

  45. Valent P, Bevec D, Maurer D, et al. Interleukin 4 promotes expression of mast cell ICAM-1 antigen. Proc Natl Acad Sci USA, 1991,88(8):3339–3342

    Article  PubMed  CAS  Google Scholar 

  46. Chinen LT, Cipriano IM, de Oliveira RS, et al. Recombinant interleukin-4-treated macrophages, epithelioid cell surrogates, harbor and arrest mycobacterium avium multiplication in vitro. Microbes Infect, 2006,8(4):965–973

    Article  PubMed  CAS  Google Scholar 

  47. Berger RB, Blackwell NM, Lass JH, et al. IL-4 and IL-13 regulation of ICAM-1 expression and eosinophil recruitment in onchocerca volvulus keratitis. Invest Ophthalmol Vis Sci, 2002,43(9):2992–2997

    PubMed  Google Scholar 

  48. Spoelstra FM, Postma DS, Hovenga H, et al. Interferon-gamma and interleukin-4 differentially regulate ICAM-1 and VCAM-1 expression on human lung fibroblasts. Eur Respir J, 1999,14(4):759–766

    Article  PubMed  CAS  Google Scholar 

  49. Vignola AM, Bonsignore G, Siena L, et al. ICAM-1 and alpha3beta1 expression by bronchial epithelial cells and their in vitro modulation by inflammatory and anti-inflammatory mediators. Allergy, 2000,55(10):931–939

    Article  PubMed  CAS  Google Scholar 

  50. Jatakanon A, Uasuf C, Maziak W, et al. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med, 1999,160(5 Pt 1):1532–1539

    Article  PubMed  CAS  Google Scholar 

  51. Yousefi S, Hemmann S, Weber M, et al. IL-8 is expressed by human peripheral blood eosinophils. Evidence for increased secretion in asthma. J Immunol, 1995,154(10):5481–5490

    PubMed  CAS  Google Scholar 

  52. Shannon J, Ernst P, Yamauchi Y, et al. Differences in airway cytokine profile in severe asthma compared to moderate asthma. Chest, 2008,133(2):420–426

    Article  PubMed  CAS  Google Scholar 

  53. Zerfaoui M, Naura AS, Errami Y, et al. Effects of PARP-1 deficiency on airway inflammatory cell recruitment in response to LPS or TNF: Differential effects on CXCR2 ligands and duffy antigen receptor for chemokines. J Leukoc Biol, 2009,86(6):1385–1392

    Article  PubMed  CAS  Google Scholar 

  54. Gjelstrup LC, Boesen T, Kragstrup TW, et al. Shedding of large functionally active CD11/CD18 integrin complexes from leukocyte membranes during synovial inflammation distinguishes three types of arthritis through differential epitope exposure. J Immunol, 2010,185(7):4154–4168

    Article  PubMed  CAS  Google Scholar 

  55. Manicone AM. Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert Rev Clin Immunol, 2009,5(1):63–75

    Article  PubMed  Google Scholar 

  56. Nathan C. Neutrophils and immunity: Challenges and opportunities. Nat Rev Immunol, 2006,6(3):173–182

    Article  PubMed  CAS  Google Scholar 

  57. Yamasawa H, Ishii Y, Kitamura S. Cytokine-induced neutrophil chemoattractant in a rat model of lipopolysaccharide-induced acute lung injury. Inflammation, 1999, 23(3):263–274

    PubMed  CAS  Google Scholar 

  58. Haddadel B, McCluskie K, Birrell MA, et al. Differential effects of ebselen on neutrophil recruitment, chemokine, and inflammatory mediator expression in a rat model of lipopolysaccharide-induced pulmonary inflammation. J Immunol, 2002,169(2):974–982

    Google Scholar 

  59. Zhao M, Brown DM, Maccallum J, et al. Effect of nippostrongylus brasiliensis L3ES on inflammatory mediator gene transcription in lipopolysaccharide lung inflammation. Parasite Immunol, 2009,31(1):50–56

    Article  PubMed  CAS  Google Scholar 

  60. Mafra de Lima F, Villaverde AB, Salgado MA, et al. Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from escherichia coli in rat. J Photochem Photobiol B, 2010,101(3):271–278

    Article  PubMed  CAS  Google Scholar 

  61. Martins JO, Zanoni FL, Martins DO, et al. Insulin regulates cytokines and intercellular adhesion molecule-1 gene expression through nuclear factor-kappa B activation in LPS-induced acute lung injury in rats. Shock, 2009,31(4):404–409

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Huang  (黄 宏).

Additional information

This project was supported by a grant from the National Natural Science Foundation of China (No. 30770945).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Yl., Huang, H., Zeng, Dx. et al. Interleukin (IL)-4 induces production of cytokine-induced neutrophil chemoattractants (CINCs) and intercellular adhesion molecule (ICAM)-1 in lungs of asthmatic rats. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 470–478 (2013). https://doi.org/10.1007/s11596-013-1144-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1144-5

Key words

Navigation