Effects of Rare Earth Pr/Ce on Tribological Behavior of ADC12 Alloy


The microstructure and microhardness of ADC12 alloy that was mixed with 0, 0.3, 0.6, and 0.9 wt.% rare earth praseodymium/cerium (Pr/Ce) were studied. The addition of Pr/Ce improved the microhardness of the alloys. The ADC12+0.6 wt% Pr/Ce alloy displayed the smallest grain size and maximal microhardness. The tribological behavior of the alloys was tested by the pin-on-disc dry sliding friction pair with a sliding velocity of 0.21 m/s under various loads (20,40,60,80 N). The wear morphology was observed by a scanning electron microscope (SEM) and the wear mechanism was discussed. The result indicated that the wear resistance of ADC12+0.6 wt% Pr/Ce alloy was the most optimal. The wear rate relative to the matrix is reduced by 67.5% under a load of 20 N. The wear mechanism is adhesive wear.

This is a preview of subscription content, access via your institution.


  1. [1]

    Dwivedi D K. Adhesive Wear Behaviour of Cast Aluminum-silicon Alloys: Overview[J]. Mater. Des., 2010, 31(5): 2 517–2 531

    CAS  Article  Google Scholar 

  2. [2]

    Sarkar A D. Wear of Aluminum-silicon Alloys[J]. Wear, 1975, 31(2): 331–343

    CAS  Article  Google Scholar 

  3. [3]

    Huang X, Yan H. Effect of Trace La Addition on the Microstructure and Mechanical Property of As-cast ADC12 Al-alloy[J]. J. Wuhan Univ. Technol-Mater. Sci. Ed., 2013, 2(28): 202–205

    Article  Google Scholar 

  4. [4]

    Anasyida A S, Daud A R, Ghazali M J. Dry Sliding Wear Behavior of Al-12Si-4Mg Alloy with Cerium Addition[J]. Mater. Des., 2010, 31(1): 365–374

    CAS  Article  Google Scholar 

  5. [5]

    Li Z H, Yan H. Modification of Primary α-Al, Eutectic Silicon and β-Al5FeSi Phases in As-cast AlSi10Cu3 Alloys with (La+Yb) Addition[J]. J. Rare Earth, 2015, 33(9): 995–1 003

    CAS  Article  Google Scholar 

  6. [6]

    Song X C, Yan H, Zhang X. Microstructure and Mechanical Properties of Al-7Si-0.7Mg Alloy Formed with an Addition of (Pr+Ce)[J]. J. Rare Earth, 2017, 35(4): 412–418

    CAS  Article  Google Scholar 

  7. [7]

    Fang M M, Yan H, Song X C, et al. Effect of (Pr+Ce) Additions on Microstructure and Mechanical Properties of AlSi5Cu1Mg Alloy[J]. Appl. Sci., 2019, 9(9): 1 856–1 869

    CAS  Article  Google Scholar 

  8. [8]

    Yan H, Song X C, Huang X. Preparation of Al-La Master Alloy by Ultrasonic Method and Modification on Al Alloy[J]. Rare Met., 2015, 34(7): 457–462

    CAS  Article  Google Scholar 

  9. [9]

    Wang L P, Guo E J, Ma B X. Modification Effect of Lanthanum on Primary Phase Mg2Si in Mg-Si Alloys[J]. J. Rare Earth, 2008, 26(1): 105–109

    Article  Google Scholar 

  10. [10]

    Sexton M D, Fischer T E. The Mild Wear of 52100 Steel[J]. Wear, 1984, 96(1): 17–30

    CAS  Article  Google Scholar 

  11. [11]

    Liu G, Li G D, Cai A H, et al. The Influence of Strontium Addition on Wear Properties of Al-20 wt% Si Alloys under Dry Reciprocating Sliding Condition[J]. Mater. Des., 2011, 32(1): 212–216

    Article  Google Scholar 

  12. [12]

    Hall E O. The Deformation and Ageing of Mild Steel: II Characteristics of the Lüders Deformation[J]. Proc. Phys. Soc., 1951, 64(9): 742–747

    Article  Google Scholar 

  13. [13]

    Petch N J, Wright E. The Plasticity and Cleavage of Polycrystalline Beryllium. II. The Cleavage Strength and Ductility Transition Temperature[J]. Proceedings of the Royal Society of London, 1980, 370 (1 740): 29–39

    CAS  Google Scholar 

  14. [14]

    Tiryakioglu M. On the Relationship between Vickers Hardness and Yield Load in Al-Zn-Mg-Cu Alloys[J]. Mater. Sci. Eng. A, 2015, 633: 17–19

    CAS  Article  Google Scholar 

  15. [15]

    Yang L J. Wear Coefficient Equation for Aluminum-based Matrix Composites against Steel Disc[J]. Wear, 2003, 255(1): 579–592

    CAS  Article  Google Scholar 

  16. [16]

    Prasad B K, Venkateswarlu K, Modi O P, et al. Influence of the Size and Morphology of Silicon Particles on the Physical, Mechanical and Tribological Properties of Some Aluminum-silicon Alloys[J]. J. Mater. Sci. Lett., 1996, 15(20): 1 773–1 776

    CAS  Article  Google Scholar 

  17. [17]

    Kori S A, Mutry B S, Chakraborty M. Development of an Efficient Grain Refiner for Al-7Si Alloy and Its Modification with Strontium[J]. Mater. Sci. Eng. A, 2000, 283(1–2): 58–61

    Article  Google Scholar 

  18. [18]

    Wang Y, Lei T, Yan M, et al. Friction Temperature Field and Its Relationship to the Transition of Wear Mechanism of Steel 51200[J]. J. Phys. D: Appl. Phys., 1992, 25(1A): A165–A169

    CAS  Article  Google Scholar 

  19. [19]

    McDonald S D, Nogita K, Dahle A K. Eutectic Nucleation in Al-Si Alloys[J]. Acta Mater., 2004, 52(14): 4 273–4 280

    CAS  Article  Google Scholar 

  20. [20]

    Rabinowitz E. The Least Wear[J]. Wear, 1984, 100(1–3): 533–541

    Article  Google Scholar 

  21. [21]

    Bhushan B. Introduction to Tribology, Second Edition[M]. USA: John Wiley & Sons, 2013

    Google Scholar 

  22. [22]

    Mohammad M G, Farshad A. Wear Behaviour of Al 5252 Alloy Reinforced with Micrometric and Nanometric SiC Particles[J]. Tribol. Int., 2016, 102: 28–37

    Article  Google Scholar 

  23. [23]

    Kang H S, Yoon W Y, Kim K H, et al. Effective Parameter for the Selection of Modifying Agent for Al-Si Alloy[J]. Mater. Sci. Eng. A, 2007, 449–451: 334–337

    Article  Google Scholar 

  24. [24]

    Liu W, Yan H, Zhu J B. Effect of the Addition of Rare Earth Element La on the Tribological Behaviour of AlSi5Cu1Mg Alloy[J]. Appl. Sci., 2018, 8(2): 163–177

    Article  Google Scholar 

  25. [25]

    Fishkis M. Metal Transfer in the Sliding Process[J]. Wear, 1988, 127(1): 101–110

    CAS  Article  Google Scholar 

  26. [26]

    Dwivedi D K. Sliding Temperature and Wear Behaviour of Cast Al-Si-Mg Alloys[J]. Mater. Sci. Eng. A, 2004, 382(1-2): 328–334

    Article  Google Scholar 

  27. [27]

    Suh N P. An Overview of the Delamination Theory of Wear[J]. Wear, 1977. 44(1): 1–16

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hong Yan 闫洪.

Additional information

Funded by the National Natural Science Foundation of China (No. 51965040) and Natural Science Foundation of Jiangxi Province (No. 20181BAB206026)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yan, H., Liu, W. et al. Effects of Rare Earth Pr/Ce on Tribological Behavior of ADC12 Alloy. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 136–142 (2021). https://doi.org/10.1007/s11595-021-2386-x

Download citation

Key words

  • Pr/Ce
  • ADC12
  • microstructure
  • microhardness
  • wear mechanism