Electrochemical Hydrogen Storage Performance of the Nanocrystalline and Amorphous Pr-Mg-Ni-based Alloys Synthesized by Mechanical Milling

Abstract

The PrMg12-type composite alloy of PrMg11Ni + x wt% Ni (x = 100, 200) with an amorphous and nanocrystalline microstructure were synthesized through the mechanical milling. Effects of milling duration and Ni content on the microstructures and electrochemical hydrogen storage performances of the ball-milled alloys were methodically studied. The ball-milled alloys obtain the optimum discharge capacities at the first cycle. Increasing Ni content dramatically enhances the electrochemical property of alloys. Milling time varying may obviously impact the electrochemical performance of these alloys. The discharge capacities show a significant upward trend with milling duration prolonging, but milling for a longer time more than 40 h induces a slight decrease in the discharge capacity of the x = 200 alloy. As milling duration increases, the cycle stability clearly lowers, while it first declines and then augments under the same condition for the x = 200 alloy. The high-rate discharge abilities of the ball-milled alloys show the optimum values with milling time varying.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Mori D, Hirose K. Recent Challenges of Hydrogen Storage Technologies for Fuel Cell Vehicles[J]. Int. J. Hydrogen Energy, 2009, 34(10): 4 569–4 574

    CAS  Article  Google Scholar 

  2. [2]

    Lan R, Irine JTS, Tao S. Ammonia and Related Chemicals as Potential Indirect Hydrogen Storage Materials[J]. Int. J. Hydrogen Energy, 2012, 37(2): 1 482–1 494

    CAS  Article  Google Scholar 

  3. [3]

    Luo Q, Li J, Li B, et al. Kinetics in Mg-based Hydrogen Storage Materials: Enhancement and Mechanism[J]. J. Magnesium Alloys, 2019, 7(1): 58–71

    CAS  Article  Google Scholar 

  4. [4]

    Marques F, Pinto HC, Figueroa SJA, et al. Mg-containing Multi-principal Element Alloys for Hydrogen Storage: A Study of the MgTiNbCr0.5 Mn0.5Ni0.5 and Mg0.68TiNbNi0.55 Compositions[J]. Int. J. Hydrogen Energy, 2020, 45(38): 19 539–19 552

    CAS  Article  Google Scholar 

  5. [5]

    Song MY, Choi E, Kwak YJ. Synthesis of a Mg-based Alloy with a Hydrogen-storage Capacity of Over 7 wt% by Adding a Polymer CMC via Transformation-involving Milling[J]. Mater. Res. Bull., 2018, 108: 23–31

    CAS  Article  Google Scholar 

  6. [6]

    Liu T, Wang CX, Wu Y. Mg-based Nanocomposites with Improved Hydrogen Storage Performances[J]. Int. J. Hydrogen Energy, 2014, 39(26): 14 262–14 274

    CAS  Article  Google Scholar 

  7. [7]

    Klebanoff LE, Keller JO. 5 Years of Hydrogen Storage Research in the U.S. DOE Metal Hydride Center of Excellence (MHCOE)[J]. Int. J. Hydrogen Energy, 2013, 38(11): 4 533–4 576

    CAS  Article  Google Scholar 

  8. [8]

    Makridis SS, Gkanas EI, Panagakos G, et al. Polymer-stable Magnesium Nanocomposites Prepared by Laser Ablation for Efficient Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2013, 38(26): 11 530–11 535

    CAS  Article  Google Scholar 

  9. [9]

    Eftekhari A, Fang B. Electrochemical Hydrogen Storage: Opportunities for Fuel Storage, Batteries, Fuel Cells, and Supercapacitors[J]. Int. J. Hydrogen Energy, 2017, 42(40): 25 143–25 165

    CAS  Article  Google Scholar 

  10. [10]

    Wang Y, Wang X, Li CM. Electrochemical Hydrogen Storage of Ball-milled MmMg12 Alloy-Ni Composites[J]. Int. J. Hydrogen Energy, 2010, 35(8): 3 550–3 554

    CAS  Article  Google Scholar 

  11. [11]

    Bu W, Zhang W, Gao J, et al. Improved Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Pr-Mg-Ni-based PrMg12-type Alloys Synthesized by Mechanical Milling[J]. Int. J. Hydrogen Energy, 2017, 42(29): 18 452–18 464

    CAS  Article  Google Scholar 

  12. [12]

    Luo S, Li S, Liu Y, et al. Synergistically Tuned Hydrogen Storage Thermodynamics and Kinetics of Mg-Al Alloys by Cu Formed in Situ Mechanochemically[J]. J. Alloys Compd., 2019, 806: 370–377

    CAS  Article  Google Scholar 

  13. [13]

    Yong H, Guo S, Yuan Z, et al. Improved Hydrogen Storage Kinetics and Thermodynamics of RE-Mg-based Alloy by Co-doping Ce-Y[J]. Int. J. Hydrogen Energy, 2019, 44(31): 16 765–16 776

    CAS  Article  Google Scholar 

  14. [14]

    Lim KL, Liu Y, Zhang QA, et al. Cycle Stability of La-Mg-Ni Based Hydrogen Storage Alloys in a Gas-solid Reaction[J]. Int. J. Hydrogen Energy, 2017, 42(37): 23 737–23 745

    CAS  Article  Google Scholar 

  15. [15]

    Zhang L, Du W, Han S, et al. Study on Solid Solubility of Mg in Pr3−x MgxNi9 and Electrochemical Properties of PuNi3-type Single-phase RE-Mg-Ni (RE = La, Pr, Nd) Hydrogen Storage Alloys[J]. Electrochim. Acta, 2015, 173: 200–208

    CAS  Article  Google Scholar 

  16. [16]

    Xu C, Lin HJ, Wang Y, et al. Catalytic Effect of in Situ Formed Nano-Mg2Ni and Mg2Cu on the Hydrogen Storage Properties of Mg-Y Hydride Composites[J]. J. Alloys Compd., 2019, 782: 242–250

    CAS  Article  Google Scholar 

  17. [17]

    Li B, Li J, Zhao H, et al. Mg-based Metastable Nano Alloys for Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2019, 44(12): 6 007–6 018

    CAS  Article  Google Scholar 

  18. [18]

    Song MY, Choi E, Kwak YJ. Increase in the Dehydrogenation Rates and Hydrogen-storage Capacity of Mg-graphene Composites by Adding Nickel via Reactive Ball Milling[J]. Mater. Res. Bull., 2020, 130: 110–938

    Article  Google Scholar 

  19. [19]

    Lv W, Wu Y. Effect of Melt Spinning on the Structural and Low Temperature Electrochemical Characteristics of La-Mg-Ni Based La0.65Ce0.1Mg0.25Ni3Co0.5 Hydrogen Storage Alloy[J]. J. Alloys Compd., 2019, 789: 547–557

    CAS  Article  Google Scholar 

  20. [20]

    Li Y, Liu Z, Zhang G, et al. Single Phase A2B7-type La-Mg-Ni Alloy with Improved Electrochemical Properties Prepared by Melt-spinning and Annealing[J]. J. Rare Earths, 2019, 37(12): 1 305–1 311

    CAS  Article  Google Scholar 

  21. [21]

    Huang J, Wang H, Ouyang L, et al. Reducing the Electrochemical Capacity Decay of Milled Mg-Ni Alloys: The Role of Stabilizing Amorphous Phase by Ti-substitution[J]. J. Power Sources, 2019, 438: 226–984

    Article  Google Scholar 

  22. [22]

    Hu F, Luo L, Cai Y, et al. Investigation of Microstructure and Electrochemical Hydrogen Storage Thermodynamic and Kinetic Properties of Ball-milled CeMg12-type Composite Materials[J]. Mater. Des., 2019, 182: 108–034

    Article  Google Scholar 

  23. [23]

    Abdellaoui M, Mokbli S, Cuevas F, et al. Structural and Electrochemical Properties of Amorphous Rich MgxNi100−x Nanomaterial Obtained by Mechanical Alloying[J]. J. Alloys Compd., 2003, 356–357: 557–565

    Article  Google Scholar 

  24. [24]

    Lai WH, Yu CZ. Research Survey of Improving Discharge Voltage Platform for Ni-MH Battery[J]. Battery Bimon., 1996, 26(4): 189–191

    CAS  Google Scholar 

  25. [25]

    Spassov T, Lyubenova L, Köster U, et al. Mg-Ni-RE Nanocrystalline Alloys for Hydrogen Storage[J]. Mater. Sci. Eng. A, 2004, 375–377: 794–799

    Article  Google Scholar 

  26. [26]

    Zhao XY, Ding Y, Ma LQ, et al. Electrochemical Properties of MmNi3.8 Co0.75Mn0.4Al0.2 Hydrogen Storage Alloy Modified with Nanocrystalline Nickel[J]. Int. J. Hydrogen Energy, 2008, 33(22): 6 727–6 733

    CAS  Article  Google Scholar 

  27. [27]

    Wang Y, Lu ZW, Gao XP, et al. Electrochemical Properties of the Ball-milled LaMg10Ni2−xAlx Alloys with Ni Powders (x = 0, 0.5, 1 and 1.5) [J]. J. Alloys Compd., 2005, 389(1-2): 290–295

    CAS  Article  Google Scholar 

  28. [28]

    Simičić MV, Zdujić M, Dimitrijević R, et al. Hydrogen Absorption and Electrochemical Properties of Mg2Ni-type Alloys Synthesized by Mechanical Alloying[J]. J. Power Sources, 2006, 158(1): 730–734

    Article  Google Scholar 

  29. [29]

    Zhu D, Zhang J, Zhu Y, et al. Electrochemical Hydrogen Storage Properties of Mg100−xNix Produced by Hydriding Combustion Synthesis and Mechanical Milling[J]. Prog. Nat. Sci. -Mater., 2017, 27(1): 144–148

    CAS  Article  Google Scholar 

  30. [30]

    Zheng G, Popov BN, White RE. Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution[J]. J. Electrochem. Soc., 1995, 142(8): 2 695–2 698

    CAS  Article  Google Scholar 

  31. [31]

    Kuriyama N, Sakai T, Miyamura H, et al. Electrochemical Impedance and Deterioration Behavior of Metal Hydride Electrodes[J]. J. Alloys Compd., 1993, 202(1-2): 183–197

    CAS  Article  Google Scholar 

  32. [32]

    Zhang YH, Yuan ZM, Zhai TT, et al. Electrochemical Hydrogen Storage Behaviors of the Nanocrystalline and Amorphous Nd-Cu-added Mg2Ni-type Alloy Electrodes Applied to Ni-MH Battery[J]. J. Solid State Electrochem., 2015, 19(8): 2 343–2 351

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanghuan Zhang 张羊换.

Additional information

Funded by National Natural Science Foundation of China (Nos. 51871125, 51901105 and 51761032) and Inner Mongolia Natural Science Foundation (No.2019BS05005)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Yuan, Z., Feng, D. et al. Electrochemical Hydrogen Storage Performance of the Nanocrystalline and Amorphous Pr-Mg-Ni-based Alloys Synthesized by Mechanical Milling. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 116–126 (2021). https://doi.org/10.1007/s11595-021-2384-z

Download citation

Key words

  • PrMg12-type alloy
  • mechanical milling
  • nanocrystalline and amorphous
  • electrochemical performance
  • electrochemical kinetics