Photoluminescence and Ce3+→Tb3+→Eu3+ Energy Transfer Processes of the Ce3+/Tb3+/Eu3+-doped β-NaYF4 Phosphors with Broadened Excitation Spectrum

Abstract

Ce3+/Tb3+ co-doped and Ce3+/Tb3+/Eu3+ tri-doped β-NaYF4 photoluminescent microcrystals using oleic acid as surfactant were synthesized using the solvothermal method. Their microstructural characteristics and photoluminescence properties were investigated in detail. They have the shape of hexagonal prism bipyramids with uniform particle size, which decreases with the concentrations of Tb3+ and Eu3+. The energy transfer processes of both the Ce3+→Tb3+ and the Ce3+→Tb3+→Eu3+ were systematically studied. Compared with Eu3+ or Tb3+ single-doped β-NaYF4 microcrystals, the sensitization by Ce3+ for the photoluminescence of Tb3+ and Eu3+ leads to a broad excitation spectral bandwidth in the ultraviolet (UV) range. Meanwhile, the corresponding optical absorption efficiency is greatly enhanced. High energy transfer efficiencies have been observed from Ce3+ to Tb3+ and from Tb3+ to Eu3+.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. [1]

    Wen D, Shi J. A Novel Narrow-Line Red Emitting Na2Y2B2O7:Ce3+, Tb3+, Eu3+ Phosphor with High Efficiency Activated by Terbium Chain for Near-UV White LEDs[J]. Dalton Trans., 2013, 42(47): 16 621–16 629

    CAS  Article  Google Scholar 

  2. [2]

    Jia Y, Lu W, Guo N, et al. Spectral Tuning of the n-UV Convertible Oxynitride Phosphor: Orange Color Emitting Realization via an Energy Transfer Mechanism[J]. Phys. Chem. Chem. Phys.: PCCP, 2013, 15(33): 13 810–13 813

    CAS  Article  Google Scholar 

  3. [3]

    Santana-Alonso A, Yanes A C, Méndez-Ramos J, et al. Sol-gel Transparent Nano-Glass-Ceramics Containing Eu3+-Doped NaYF4 Nanocrystals[J]. J. Non-Cryst. Solids, 2010, 356(18–19): 933–936

    CAS  Article  Google Scholar 

  4. [4]

    Wang L, Li Y. Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Muticolor Luminescent Materials[J]. Nano Lett., 2006, 6(8): 1 645–1 649

    Article  CAS  Google Scholar 

  5. [5]

    Li C, Zhang C, Hou Z, et al. β-NaYF4 and β-NaYF4:Eu3+ Microstructures: Morphology Control and Tunable Luminescence Properties[J]. J. Phys. Chem. C, 2009, 113(6): 2 332–2 339

    CAS  Article  Google Scholar 

  6. [6]

    Li Z, Zhang Y, Jiang S. Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles[J]. Adv. Mater., 2008, 20(24): 4 765–4 769

    CAS  Article  Google Scholar 

  7. [7]

    He M, Huang P, Zhang C, et al. Phase- and Size-Controllable Synthesis of Hexagonal Upconversion Rare-Earth Fluoride Nanocrystals through an Oleic Acid/Ionic Liquid Two-Phase System[J]. Chem.-A Eur. Journal, 2012, 18(19): 5 954–5 969

    CAS  Article  Google Scholar 

  8. [8]

    Palilla F C, Levine A K. YVO4:Eu: A Highly Efficient, Red-Emitting Phosphor for High Pressure Mercury Lamps[J]. Appl. Opt., 1966, 5(9): 1 467–1 468

    CAS  Article  Google Scholar 

  9. [9]

    Zhang X, Zhou L, Pang Q, et al. Tunable Luminescence and Ce3+→Tb3+→Eu3+ Energy Transfer of Broadband-Excited and Narrow Line Red Emitting Y2SiO5:Ce3+, Tb3+, Eu3+ Phosphor[J]. J. Phys. Chem. C, 2014, 18(14): 7 591–7 598

    Article  CAS  Google Scholar 

  10. [10]

    Jiang G, Wei X, Chen Y, et al. Luminescent La2O2S:Eu3+ Nanoparticles as Non-Contact Optical Temperature Sensor in Physiological Temperature Range[J]. Mater. Lett., 2015, 143: 98–100

    CAS  Article  Google Scholar 

  11. [11]

    Zhao Y, Rabouw F T, Van Puffelen T, et al. Lanthanide-Doped CaS and SrS Luminescent Nanocrystals: A Single-Source Precursor Approach for Doping[J]. J. Am. Chem. Soc., 2014, 136(47): 16 533–16 543

    CAS  Article  Google Scholar 

  12. [12]

    Li Y, Zhou S, Chen Z, et al. Luminescence Properties of Br-Doped ZnS Nanoparticles Synthesized by a Low Temperature Solid-State Reaction Method[J]. Ceram. Int., 2013, 39(5): 5 521–5 525

    CAS  Article  Google Scholar 

  13. [13]

    Tang L, Gui W, Ding K, et al. Ion Exchanged YVO4: Eu3+ Nanocrystals and Their Strong Luminescence Enhanced by Energy Transfer of Thenoyltrifluoroacetone Ligands[J]. J. Alloys Compd., 2014, 590: 277–282

    CAS  Article  Google Scholar 

  14. [14]

    Ji L, Chen N, Du G, et al. Synthesis and Luminescence of Y2O3:Eu3+ Inorganic-Organic Hybrid Nanostructures with Thenoyltrifluoroacetone[J]. Ceram. Int., 2014, 40(2): 3 117–3 122

    CAS  Article  Google Scholar 

  15. [15]

    Zhan Y, Du G, Chen N, et al. Photoluminescence Properties of YVO4: Eu3+, Ba2+ Nanoparticles Prepared by an Ion Exchange Method[J]. Mater. Sci. Semicond. Proc., 2016, 41: 233–239

    CAS  Article  Google Scholar 

  16. [16]

    Zong L, Xu P, Ding Y, et al. Y2O3:Yb3+/Er3+ Hollow Spheres with Controlled Inner Structures and Enhanced Upconverted Photoluminescence [J]. Small, 2015, 11(23): 2 768–2 773

    CAS  Article  Google Scholar 

  17. [17]

    Yu W, Wang X, Chen N, et al. A Strategy to Prepare Highly Redispersible and Strongly Luminescent α-NaYF4: Eu3+ Hybrid Nanostructures with Multi-Channel Excitation[J]. CrystEngComm, 2014, 16(15): 3 214–3 221

    CAS  Article  Google Scholar 

  18. [18]

    He Y, Chen N, Du G. Synthesis of LaOF:Eu3+ Nanoparticles with Strong Luminescence Enhanced by Organic Ligands[J]. J. Am. Ceram. Soc., 2014, 97(6): 1 931–1 936

    CAS  Article  Google Scholar 

  19. [19]

    Yang Y, Liu B, Tang L, et al. Ion Exchanged LaF3:Tb3+ Based Inorganic-Organic Hybrid Nanostructures and Their Strong Luminescence[J]. Mater. Sci. Semicond. Proc., 2015, 30: 513–517

    CAS  Article  Google Scholar 

  20. [20]

    Xie R, Hirosaki N, Suehiro T, et al. A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+-Based Red Phosphors for White Light-Emitting Diodes[J]. Chem. Mater., 2006, 18(23): 5 578–5 583

    CAS  Article  Google Scholar 

  21. [21]

    Zeuner M, Pagano S, Schnick W. Nitridosilicates and Oxonitridosilicates: From Ceramic Materials to Structural and Functional Diversity [J]. Angewandte Chemie, 2011, 50(34): 7 754–7 775

    CAS  Article  Google Scholar 

  22. [22]

    Shen J, Sun L, Yan C. Luminescent Rare Earth Nanomaterials for Bioprobe Applications[J]. Dalton Trans., 2008, 42: 5 687–5 697

    Article  CAS  Google Scholar 

  23. [23]

    Heer S, Kömpe K, Güdel H.-U, et al. Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals[J]. Adv. Mater., 2004, 16(23–24): 2 102–2 105

    CAS  Article  Google Scholar 

  24. [24]

    Yi G S, Chow G M. Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence[J]. Adv. Funct. Mater., 2006, 16(18): 2 324–2 329

    CAS  Article  Google Scholar 

  25. [25]

    Krämer K W, Biner D, Frei G, et al. Hexagonal Sodium Yttrium Fuoride Based Green and Blue Emitting Upconversion Phosphors[J]. Chem. Mater., 2004, 16(7): 1 244–1 251

    Article  CAS  Google Scholar 

  26. [26]

    Reddy K N, Jafaruddin M. Decay Behaviour of NaYF4:Gd3+ Phosphors [J]. J. Mater. Sci. Lett., 1983, 2: 296–298

    CAS  Article  Google Scholar 

  27. [27]

    Blasse G. Optical Electron Transfer Between Metal Ions and its Consequences[J]. Struct. Bond., 1991, 76: 153–187

    CAS  Article  Google Scholar 

  28. [28]

    Fischer S, Baur F, Jüstel T. Suppression of Metal-to-Metal Charge Transfer Quenching in Ce3+ and Eu3+ Comprising Garnets by Core-Shell Structure [J]. J. Lumin., 2018, 203: 467–472

    CAS  Article  Google Scholar 

  29. [29]

    Zhao B, Shen D, Tan Q, et al. Morphology-Controllable Synthesis, Energy Transfer and Luminescence Properties of Ce3+/Tb3+/Eu3+-Doped CaF2 Microcrystals[J]. J. Mater. Sci., 2017, 52(10): 5 857–5 870

    CAS  Article  Google Scholar 

  30. [30]

    Zhang X, Gong M. Photoluminescence and Energy Transfer of Ce3+, Tb3+, and Eu3+ Doped KBaY(BO3)2 as Near-Ultraviolet-Excited Color-Tunable Phosphors[J]. Indust. & Eng. Chem. Res., 2015, 54(31): 7 632–7 639

    CAS  Article  Google Scholar 

  31. [31]

    Zhou J, Xia Z. Luminescence Color Tuning of Ce3+, Tb3+ and Eu3+ Co-doped and Tri-Doped BaY2Si3O10 Phosphors via Energy Transfer[J]. J. Mater. Chem. C, 2015, 3(29): 7 552–7 560

    CAS  Article  Google Scholar 

  32. [32]

    Yu Y, Lin B, Li X. Hydrothermal Synthesis of V-Cr-Al-O Nanospheres and Their Effect on Decomposition of Ammonium Perchlorate[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2019, 34(6): 1 460–1 462

    CAS  Article  Google Scholar 

  33. [33]

    Tu D, Liu Y, Zhu H, et al. Breakdown of Crystallographic Site Symmetry in Lanthanide-Doped NaYF4 Crystals[J]. Angewandte Chemie Int. Ed., 2013, 52(4): 1 128–1 133

    CAS  Article  Google Scholar 

  34. [34]

    Zhang X, Fan X, Qiao X, et al. NaGdF4:Ce3+ and (Ce,Gd)F3 Nanoparticles: Hydrothermal Synthesis and Luminescence Properties [J]. Mater. Chem. Phys., 2010, 121(1–2): 274–279

    CAS  Article  Google Scholar 

  35. [35]

    Wang F, Han Y, Lim C S, et al. Simultaneous Phase and Size Control of Upconversion Nanocrystals through Lanthanide Doping[J]. Nature, 2010, 463(7284): 1 061–1 065

    CAS  Article  Google Scholar 

  36. [36]

    Kim S Y, Woo K, Lim K, et al. Highly Bright Multicolor Tunable Ultrasmall β-Na(Y,Gd)F4:Ce,Tb,Eu/β-NaYF4 Core/Shell Nanocrystals[J]. Nanoscale, 2013, 5(19): 9 255–9 263

    CAS  Article  Google Scholar 

  37. [37]

    Wang L, Li Y. Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals[J]. Chem. Mater., 2007, 19: 727–734

    CAS  Article  Google Scholar 

  38. [38]

    Ding M, Zhang H, Chen D, et al. Color-Tunable Luminescence, Energy Transfer and Temperature Sensing Behavior of Hexagonal NaYF4:Ce3+/Tb3+/Eu3+ Microcrystals[J]. J. Alloys Compd., 2016, 672: 117–24

    CAS  Article  Google Scholar 

  39. [39]

    Huignard A, Buissette V R, Franville A -C, et al. Emission Processes in YVO4:Eu Nanoparticles[J]. J. Phys. Chem. B, 2003, 107(28): 6 754–6 759

    CAS  Article  Google Scholar 

  40. [40]

    Mai H, Zhang Y, Si R, et al. High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties[J]. J. Am. Chem. Soc., 2006, 128(19): 6 426–6 436

    CAS  Article  Google Scholar 

  41. [41]

    Blasse G. Energy Transfer from Ce3+ to Eu3+ in (Y, Gd)F3[J]. Phys. Status Solidi A, 1983, 75(1): K41–K43

    CAS  Article  Google Scholar 

  42. [42]

    Zhang L, Wang G Z, Dong P T Liu X, Lin J, LaGaO3: A (A = Sm3+ and/or Tb3+) as Promising Phosphors for Field Emission Displays[J]. J. Mater. Chem., 2008, 18(2): 221–228

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nan Chen 陈楠 or Guoping Du 杜国平 or Aisheng Zhang 章爱生.

Additional information

Funded by the National Natural Science Foundation of China (Nos.21571095, 51362020), the Jiangxi Provincial Department of Education (No.KJLD13008) and the Scientific Research Projects of Hunan Education Department (No. 18C1442)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Chen, N., Wang, X. et al. Photoluminescence and Ce3+→Tb3+→Eu3+ Energy Transfer Processes of the Ce3+/Tb3+/Eu3+-doped β-NaYF4 Phosphors with Broadened Excitation Spectrum. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 33–43 (2021). https://doi.org/10.1007/s11595-021-2375-0

Download citation

Key words

  • lanthanide doped β-NaYF4
  • photoluminescence
  • energy transfer
  • broad excitation spectrum
  • solvothermal method