Corrosion Behavior of Steel Fibers in Reactive Powder Concrete with High Volume of Mineral Admixtures

Abstract

The corrosion behavior and the effects of temperature on critical chloride content (Ccrit) of steel fibers in RPC were analyzed by a pH meter, ion chromatography, mercury intrusion porosimetry (MIP), and electrochemical techniques. It was found that the suspension pH value, the chloride binding capacity, and the total porosity of RPC were lower than those of high-performance concrete (HPC). The pore structure of RPC mainly consisted of gel pores. The Ccrit values of steel fibers in RPC and HPC at 20 °C were 1% and 2%, respectively. When the temperature reached 50 °C, the Ccrit value of steel fibers in HPC decreased significantly, whereas it remained unchanged in RPC. The corrosion rate of corroded fibers in both RPC and HPC started to decrease with the rise in temperature.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Bakis A, Isik E, El AA, et al. Mechanical Properties of Reactive Powder Concretes Produced Using Pumice Powder[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2019, 34(2): 353–360

    CAS  Google Scholar 

  2. [2]

    Jiao C, Sun W. Impact Resistance of Reactive Powder Concrete[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2015, 30(4): 752–757

    CAS  Google Scholar 

  3. [3]

    Wang Y, Chen S, Ge L, et al. Analysis of Dynamic Tensile Process of Fiber Reinforced Concrete by Acoustic Emission Technique[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2018, 33(5): 1 129–1 139

    CAS  Google Scholar 

  4. [4]

    Beglarigale A, Yazıcı H. Electrochemical Corrosion Monitoring of Steel Fiber Embedded in Cement Based Composites[J]. Cem. Concr. Compos., 2017, 83: 427–446

    CAS  Google Scholar 

  5. [5]

    Wang Y, Niu D, Song Z. Effect of Acid Rain Erosion on Steel Fiber Reinforced Concrete[J]. J. Wuhan Univ. Technol. —Mater. Sci. Ed., 2017, 32(1): 121–128

    CAS  Google Scholar 

  6. [6]

    Berrocal CG, Lundgren K, Löfgren I. Corrosion of Steel Bars Embedded in Fiber Reinforced Concrete under Chloride Attack: State of the Art[J]. Cem. Concr. Res., 2016, 80: 69–85

    CAS  Google Scholar 

  7. [7]

    Chen G, Hadi MNS, Gao D, et al. Experimental Study on the Properties of Corroded Steel Fibers[J]. Constr. Build. Mater., 2015, 79: 165–172

    Google Scholar 

  8. [8]

    Kim B, Boyd AJ, Lee J-Y. Durability Performance of Fiber-reinforced Concrete in Severe Environments[J]. J. Compos. Mater., 2011, 45(23): 2 379–2 389

    CAS  Google Scholar 

  9. [9]

    Tran NT, Pyo S, Kim DJ. Corrosion Resistance of Strain-hardening Steel-fiber-reinforced Cementitious Composites[J]. Cem. Concr. Compos., 2015, 63: 17–29

    CAS  Google Scholar 

  10. [10]

    Tang K. Stray Current Induced Corrosion of Steel Fiber Reinforced Concrete[J]. Cem. Concr. Res., 2017, 100: 445–456

    CAS  Google Scholar 

  11. [11]

    Yu H, Chiang KK, Yang L. Threshold Chloride Level and Characteristics of Reinforcement Corrosion Initiation in Simulated Concrete Pore Solutions[J]. Constr. Build. Mater., 2012, 26(1): 723–729

    Google Scholar 

  12. [12]

    Angst U, Elsener B, Larsen CK, et al. Critical Chloride Content in Reinforced Concrete — a Review[J]. Cem. Concr. Res., 2009, 39(12): 1 122–1 138

    CAS  Google Scholar 

  13. [13]

    Hwang JP, Jung MS, Kim M, et al. Corrosion Risk of Steel Fiber in Concrete [J]. Constr. Build. Mater., 2015, 101: 239–245

    Google Scholar 

  14. [14]

    Celik K, Jackson MD, Mancio M, et al. High-volume Natural Volcanic Pozzolan and Limestone Powder as Partial Replacements for Portland Cement in Self-compacting and Sustainable Concrete[J]. Cem. Concr. Compos., 2014, 45: 136–147

    CAS  Google Scholar 

  15. [15]

    Pyo S, Tafesse M, Kim H, et al. Effect of Chloride Content on Mechanical Properties of Ultra High Performance Concrete[J]. Cem. Concr. Compos., 2017, 84: 175–187

    CAS  Google Scholar 

  16. [16]

    Chousidis N, Ioannou I, Rakanta E, et al. Effect of Fly Ash Chemical Composition on the Reinforcement Corrosion, Thermal Diffusion and Strength of Blended Cement Concretes[J]. Constr. Build. Mater., 2016, 126: 86–97

    CAS  Google Scholar 

  17. [17]

    Li L, Nam J, Hartt WH. Ex Situ Leaching Measurement of Concrete Alkalinity[J]. Cem. Concr. Res., 2005, 35(2): 277–283

    CAS  Google Scholar 

  18. [18]

    Sánchez I, Nóvoa XR, Vera G de, et al. Microstructural Modifications in Portland Cement Concrete due to Forced Ionic Migration Tests. Study by Impedance Spectroscopy[J]. Cem. Concr. Res., 2008, 38(7): 1 015–1 025

    Google Scholar 

  19. [19]

    Zhang M-H, Islam J. Use of Nano-silica to Reduce Setting Time and Increase Early Strength of Concretes with High Volumes of Fly Ash or Slag[J]. Constr. Build. Mater., 2012, 29: 573–580

    Google Scholar 

  20. [20]

    Sohail MG, Wang B, Jain A, et al. Advancements in Concrete Mix Designs: High-Performance and Ultrahigh-Performance Concretes from 1970 to 2016[J]. J. Mater. Civ. Eng., 2018, 30(3): 04 017–310

    Google Scholar 

  21. [21]

    Huet B, L’Hostis V, Miserque F, et al. Electrochemical Behavior of Mild Steel in Concrete: Influence of pH and Carbonate Content of Concrete Pore Solution[J]. Electrochim. Acta, 2005, 51(1): 172–180

    CAS  Google Scholar 

  22. [22]

    Garcés P, Andión LG, Zornoza E, et al. The Effect of Processed Fly Ashes on the Durability and the Corrosion of Steel Rebars Embedded in Cement-modified Fly Ash Mortars[J]. Cem. Concr. Compos., 2010, 32(3): 204–210

    Google Scholar 

  23. [23]

    Vedalakshmi R, Rajagopal K, Palaniswamy N. Long Term Corrosion Performance of Rebar Embedded in Blended Cement Concrete under Macro Cell Corrosion Condition[J]. Constr. Build. Mater., 2008, 22(3): 186–199

    Google Scholar 

  24. [24]

    Liu J, Ou G, Qiu Q, et al. Chloride Transport and Microstructure of Concrete With/without Fly Ash under Atmospheric Chloride Condition [J]. Constr. Build. Mater., 2017, 146: 493–501

    CAS  Google Scholar 

  25. [25]

    Oh BH, Jang SY, Shin YS. Experimental Investigation of the Threshold Chloride Concentration for Corrosion Initiation in Reinforced Concrete Structures[J]. Mag. Concr. Res., 2003, 55(2): 117–124

    CAS  Google Scholar 

  26. [26]

    Bouteiller V, Cremona C, Baroghel-Bouny V, et al. Corrosion Initiation of Reinforced Concretes Based on Portland or GGBS Cements: Chloride Contents and Electrochemical Characterizations Versus Time[J]. Cem. Concr. Res., 2012, 42(11): 1 456–1 467

    CAS  Google Scholar 

  27. [27]

    Ben-Yair M. The Effect of Chlorides on Concrete in Hot and Arid Regions[J]. Cem. Concr. Res., 1974, 4(3): 405–416

    CAS  Google Scholar 

  28. [28]

    Yuan Q, Shi C, Schutter G De, et al. Chloride Binding of Cement-based Materials Subjected to External Chloride Environment - A Review[J]. Constr. Build. Mater., 2009, 23(1): 1–13

    Google Scholar 

  29. [29]

    Ogirigbo OR, Black L. Chloride Binding and Diffusion in Slag Blends: Influence of Slag Composition and Temperature[J]. Constr. Build. Mater., 2017, 149: 816–825

    CAS  Google Scholar 

  30. [30]

    Thomas MDA, Hooton RD, Scott A, et al. The Effect of Supplementary Cementitious Materials on Chloride Binding in Hardened Cement Paste[J]. Cem. Concr. Res., 2012, 42(1): 1–7

    CAS  Google Scholar 

  31. [31]

    Jung MS, Kim KB, Lee SA, et al. Risk of Chloride-induced Corrosion of Steel in SF Concrete Exposed to a Chloride-bearing Environment[J]. Constr. Build. Mater., 2018, 166: 413–422

    CAS  Google Scholar 

  32. [32]

    American Society of Testing and Materials. Standard Test Method for Half-cell Potentials of Uncoated Reinforcing Steel in Concrete[S]. ASTM C 876-09, 2009

  33. [33]

    Andrade C, Alonso C. RILEM TC 154-EMC: Electrochemical Techniques for Measuring Metallic Corrosion. Test Methods for On-site Corrosion Rate Measurement of Steel Reinforcement in Concrete by Means of the Polarization Resistance Method[J]. Mater. Struct., 2004, 37(273): 623–643

    CAS  Google Scholar 

  34. [34]

    Kawamura M, Kayyali OA, Haque MN. Effects of Fly Ash on Pore Solution Composition in Calcium and Sodium Chloride-bearing Mortars[J]. Cem. Concr. Res., 1988, 18(5): 763–773

    CAS  Google Scholar 

  35. [35]

    Thomas M. Chloride Threshold in Marine Concrete[J]. Cem. Concr. Res., 1996, 26(4): 513–519

    CAS  Google Scholar 

  36. [36]

    Dhir RK, El-Mohr MAK, Dyer TD. Chloride Binding in GGBS Concrete[J]. Cem. Concr. Res., 1996, 26(12): 1 767–1 773

    CAS  Google Scholar 

  37. [37]

    Luo R, Cai Y, Wang C, et al. Study of Chloride Binding and Diffusion in GGBS Concrete[J]. Cem. Concr. Res., 2003, 33(1): 1–7

    Google Scholar 

  38. [38]

    Manera M, Vennesland Ø, Bertolini L. Chloride Threshold for Rebar Corrosion in Concrete with Addition of Silica Fume[J]. Corros. Sci., 2008, 50(2): 554–560

    CAS  Google Scholar 

  39. [39]

    Ghods P, Isgor OB, McRae GA, et al. Electrochemical Investigation of Chloride-induced Depassivation of Black Steel Rebar under Simulated Service Conditions[J]. Corros. Sci., 2010, 52(5): 1 649–1 659

    CAS  Google Scholar 

  40. [40]

    Deus JM, Díaz B, Freire L, et al. The Electrochemical Behaviour of Steel Rebars in Concrete: an Electrochemical Impedance Spectroscopy Study of the Effect of Temperature[J]. Electrochim. Acta., 2014, 131: 106–115

    CAS  Google Scholar 

  41. [41]

    Gastaldi M, Bertolini L. Effect of Temperature on the Corrosion Behaviour of Low-nickel Duplex Stainless Steel Bars in Concrete[J]. Cem. Concr. Res., 2014, 56: 52–60

    CAS  Google Scholar 

  42. [42]

    Alhozaimy A, Hussain RR, Al-Zaid R, et al. Coupled Effect of Ambient High Relative Humidity and Varying Temperature Marine Environment on Corrosion of Reinforced Concrete[J]. Constr. Build. Mater., 2012, 28(1): 670–679

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juanhong Liu 刘娟红.

Additional information

Funded by the National Natural Science Foundation of China (Nos. 51834001 and 51678049)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, J., Xue, Y. et al. Corrosion Behavior of Steel Fibers in Reactive Powder Concrete with High Volume of Mineral Admixtures. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 541–550 (2020). https://doi.org/10.1007/s11595-020-2291-8

Download citation

Key words

  • corrosion
  • steel fibers
  • chloride
  • reactive powder concrete
  • critical chloride content