Fabrication and Property of SiC Ceramic with Large Thickness/Diameter Ratios


Silicon carbide ceramics with different thicknesses/diameter ratios were prepared by using ultra-fine silicon carbide powder with the sintering additives of 1.0 wt% boron and 1.5 wt% carbon. The influence of thickness/diameter ratio on the microstructure and density of SiC ceramics was investigated in detail. The experimental results show that the addition of boron and carbon sintering aids can promote the densification process of SiC ceramic, leading to the low sintering temperature and improve mechanical properties. At 1950 °C, SiC ceramic with a density of 99% exhibits Young’s modulus, hardness, and flexural strength of 476 MPa, 28.3 GPa, and 334 MPa, respectively. It is found that long holding time has a positive effect on the uniformity of the microstructure and density distribution of SiC ceramics with large thickness/diameter ratios. Additionally, the sintering additive of boron can solid-solve into SiC, and then facilitate the phase transformation of SiC to form 6H-SiC and 4H-SiC composite ceramics.

This is a preview of subscription content, log in to check access.


  1. [1]

    Belmonte M, Nistal A, Boutbien P, et al. Toughened and Strengthened Silicon Carbide Ceramics by Adding Graphene-based Fillers[J]. Scripta Mater., 2016, 113: 127–130

    CAS  Article  Google Scholar 

  2. [2]

    Daviau K, Lee K. High-Pressure, High-Temperature Behavior of Silicon Carbide: A Review[J]. Crystals, 2018, 8(5): 217–234

    Article  Google Scholar 

  3. [3]

    Kim YW, Lim KY, Seo WS, et al. Microstructure and Thermal Conductivity of Silicon Carbide with Yttria and Scandia[J]. J. Am. Ceram. Soc., 2014, 97(3): 923–928

    CAS  Article  Google Scholar 

  4. [4]

    Lee SG, Kim YW. Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics[J]. J. Am. Ceram. Soc., 2001, 84(6): 1 347–1 353

    CAS  Article  Google Scholar 

  5. [5]

    Lee SH, Lee YI, Kim YW, et al. Mechanical Properties of Hot-forged Silicon Carbide Ceramics[J]. Scripta Mater., 2005, 52(2): 153–156

    CAS  Article  Google Scholar 

  6. [6]

    Li Q, Zhang Y, Gong H, et al. Enhanced Fracture Toughness of Pressureless-sintered SiC Ceramics by Addition of Graphene[J]. J. Mater. Sci. Technol., 2016, 32(7): 633–638

    CAS  Article  Google Scholar 

  7. [7]

    Llorente J, Belmonte M. Friction and Wear Behaviour of Silicon Carbide/Graphene Composites under Isooctane Lubrication[J]. J. Eur. Ceram. Soc., 2018, 38(10): 3 441–3 446

    CAS  Article  Google Scholar 

  8. [8]

    Chen W. SiC Scanning Mirror Assembly Design and Research[D]. Changchun: Chinese Academy of Science, 2011

    Google Scholar 

  9. [9]

    Zhai Y, Li Z, Sun H, et al. Effect of Reaction Sintering Process on Microstructure and Properties of SiC Ceramics[J]. Bull. Chin. Ceram. Soc., 2017, 36(2): 753–758

    Google Scholar 

  10. [10]

    Lange FF. Hot-pressing Behaviour of Silicon Carbide Powders with Additions of Aluminium Oxide[J]. J. Mater. Sci., 1975, 10: 314–320.

    CAS  Article  Google Scholar 

  11. [11]

    Lin BW. Hot-pressing of b-SiC Powder with Al-B-C Additives[J]. Commun. Am. Ceram. Soc., 1986, 69(4): 67–68

    CAS  Article  Google Scholar 

  12. [12]

    Takeda Y, Nakamura K, Maeda K. Effects of Elemental Additives on Electrical Resistivity of Silicon Carbide Ceramics[J]. Commun. Am. Ceram. Soc., 1987, 70(10): 266–267

    Article  Google Scholar 

  13. [13]

    Wu A, Cao W, Ma F, et al. Solid State Hot Pressing of SiC Ceramics[J]. J. Univ. Sci. Technol. Beijing, 2000, 22(4): 328–330

    CAS  Google Scholar 

  14. [14]

    Zhan G, Xie R, Mitomo M. Effect of b-to-a Phase Transformation on the Microstructural Development and Mechanical Properties of Finegrained Silicon Carbide Ceramics[J]. J. Am. Ceram. Soc., 2001, 84(5): 945–950

    CAS  Article  Google Scholar 

  15. [15]

    Lundqvist D, Björqvist KJ, Häggroth S. On the Crystal Structure of Silicon Carbide and Its Content of Impurities[J]. Acta Chem. Scand., 1968, 171(2): 171–175

    Google Scholar 

  16. [16]

    Xiao H. Synthesizing Ultrafine SiC Powders and Researching the Theory of Strengthening and Toughening in Ceramics[D]. Changsha: Hunan University, 1991

    Google Scholar 

  17. [17]

    Bermudez VM. Structure and Properties of Cubic Silicon Carbide (100) Surfaces: A Review[J]. Phys. Status Solid, 1997, 202: 447–474

    CAS  Article  Google Scholar 

  18. [18]

    Bind JM, Biggers JV. The Role of the Grain Boundaries in Hot Pressing Silicon Carbide[J]. J. Appl. Phys., 1976, 47(12): 5171–5174

    CAS  Article  Google Scholar 

  19. [19]

    Shaffer PTB. A Review of the Structure of Silicon Carbide[J]. Acta Cryst., 1969, B25: 477–487

    Article  Google Scholar 

  20. [20]

    Shcherban ND. Review on Synthesis, Structure, Physical and Chemical Properties and Functional Characteristics of Porous Silicon Carbide[J]. J. Ind. Eng. Chem., 2017, 50: 15–28

    CAS  Article  Google Scholar 

  21. [21]

    Zhan GD, Kim YW, Xie RJ. Transmission Electron Microscopy Observation in a Liquid-phase-sintered SiC with Oxynitride Glass[J]. J. Mater. Res., 2001, 16(8): 2189–2191

    CAS  Article  Google Scholar 

  22. [22]

    Zhou Y, Hirao K, Toriyama M, et al. Effects of Intergranular Phase Chemistry on the Microstructure and Mechanical Properties of Silicon Carbide Ceramics Densified with Rare-earth Oxide and Alumina Additions[J]. J. Am. Ceram. Soc., 2001, 84(7): 1642–1644

    CAS  Article  Google Scholar 

  23. [23]

    Lei Y, Yan S, Huang S, et al. Experimental and Numerical Investigation of Densification Behaviors during Powder Compaction[J]. J. Adv. Mech. Des. Syst. Manuf., 2018, 12(1): 22–23

    Article  Google Scholar 

  24. [24]

    Xu XS, Song J, Wu JF, et al. Preparation and Thermal Shock Resistance of Mullite and Corundum Co-bonded SiC Ceramics for Solar Thermal Storage[J]. J. Wuhan. Univ. Tech. -Mat. Sci. Ed., 2020, 35(01): 16–25

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Weimin Wang 王为民.

Additional information

Funded by the National Key Research and Development Plan of China (No.2017YFB0310400), and the National Natural Science Foundation of China (No. 5167020705)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, L., He, Q., Hu, L. et al. Fabrication and Property of SiC Ceramic with Large Thickness/Diameter Ratios. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 506–513 (2020). https://doi.org/10.1007/s11595-020-2286-5

Download citation

Key words

  • SiC
  • large thickness/diameter ratios
  • mechanical properties
  • uniformity