Rational Synthesis of Cylindrical Silver Single-crystalline Nanowires via Poly(vinyl pyrrolidone) Reduction of AgCl

Abstract

We presented a simple yet convenient hydrothermal approach for the large-scale synthesis of uniform cylindrical silver (Ag) single-crystalline nanowires with diameters of about 25 nm and lengths of 1–4 µm. Poly(vinyl pyrrolidone) (PVP) was used as a reducing agent, and AgCl was used as a precursor to deliberately control [Ag+] at a low degree in the overall reaction process through its dynamic equilibrium by directly reducing AgCl with PVP at a quasi-equilibrium growth condition. The as-obtained products were characterized by powder X-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), infrared spectra (IR) and Raman spectra. Factors such as [PVP], reaction temperature, time, and species of reducing agents and precursors were investigated to have strong influences on the morphologies and structures of the resultant Ag nanostructures. The wire diameter can conveniently be adjusted between 25 and 50 nm by simply adjusting [PVP], reaction temperature and reducing agent species. The as-synthesized silver nanowires can be self-assembled into perfect order arrays after being dried on tin foil due to the PVP coating on the surface, the circular cross-section and the uniform diameter of the Ag nanowires. These special silver nanowires with a core-shell structure as well as their spontaneous self-assembly of order arrays are expected to provide potential applications in flexible conductors, dielectric materials, electromagnetic shielding materials and nano-devices.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Garnett EC, Cai WS, Cha JJ, et al. Self-limited Plasmonic Welding of Silver Nanowire Junctions[J]. Nat.Mater., 2012, 3: 241–249

    Google Scholar 

  2. [2]

    Pyayt AL, Wiley B, Xia YN, et al. Integration of Photonic and Silver Nanowire Plasmonic Waveguides[J]. Nat. Nanotech., 2008, 11: 660–665

    Google Scholar 

  3. [3]

    Dong CF, Ren XF, Yang R, et al. Coupling of Light from an Optical Fiber Taper into Silver Nanowires[J]. Appl. Phys. Lett., 2009, 22: 221 109

    Google Scholar 

  4. [4]

    Kim T, Kim YW, Lee HS, et al. Uniformly Interconnected Silver-Nanowire Networks for Transparent Film Heaters[J]. Adv. Funct. Mater., 2013, 10: 1 250–1 255

    Google Scholar 

  5. [5]

    Preston C, Fang ZQ, Murray J, et al. Silver Nanowire Transparent Conducting Paper-based Electrode with High Optical Haze[J]. J. Mater. Chem. C, 2014, 7: 1 248–1 254

    Google Scholar 

  6. [6]

    Leem DS, Edwards A, Faist M, et al. Efficient Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes[J]. Adv. Mater., 2011, 38: 4 371–4 375

    Google Scholar 

  7. [7]

    Lee P, Lee J, Lee H, et al. Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network[J]. Adv. Mater., 2012, 25: 3 326–3 332

    Google Scholar 

  8. [8]

    Margulis GY, Christoforo MG, Lam D, et al. Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells[J]. Adv. Energy Mater., 2013, 12: 1 657–1 663

    Google Scholar 

  9. [9]

    Xie W, Cheng H, Chu Z, et al. Effect of Surface Modification on Microwave Absorbing Properties of Magnetic Metal Fibers[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2007, 22(2): 218–220

    CAS  Google Scholar 

  10. [10]

    Shi HY, Hu B, Yu XC, et al. Ordering of Disordered Nanowires: Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface[J]. Adv. Funct. Mater., 2010, 6: 958–964

    Google Scholar 

  11. [11]

    Hu MJ, Gao JF, Dong YC, et al. Flexible Transparent PES/Silver Nanowires/PET Sandwich-Structured Film for High-Efficiency Electromagnetic Interference Shielding[J]. Langmuir, 2012, 18: 7 101–7 106

    Google Scholar 

  12. [12]

    Leach AM, Mcdowell M, Gall K. Deformation of Top-down and Bottom-up Silver Nanowires[J]. Adv. Funct. Mater., 2007, 1: 43–53

    Google Scholar 

  13. [13]

    Schider G, Krenn JR Hohenau A, et al. Plasmon Dispersion Relation of Au and Ag Nanowires[J]. Phys. Rev. B, 2003, 15: 155 427

    Google Scholar 

  14. [14]

    Mohanty P, Yoon I, Kang T, et al. Simple Vapor-phase Synthesis of Single-crystalline Ag Nanowires and Single-nanowire Surface-enhanced Raman Scattering[J]. J. Amer. Chem. Soc., 2007, 31: 9 576–9 577

    Google Scholar 

  15. [15]

    Hong BH, Bae SC, Lee CW, et al. Ultrathin Single-crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase[J]. Science, 2001, 5541: 348–351

    Google Scholar 

  16. [16]

    Yan H, Park SH, Finkelstein G, et al. DNA-templated Self-assembly of Protein Arrays and Highly Conductive Nanowires[J]. Science, 2003, 5641: 1 882–1 884

    Google Scholar 

  17. [18]

    Kim TY, Kim WJ, Hong SH, et al. Ionic-Liquid-Assisted Formation of Silver Nanowires[J]. Angew. Chemlnt. Edit., 2009, 21: 3 806–3 809

    Google Scholar 

  18. [19]

    Jana NR, Gearheart L, Murphy CJ. Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio[J]. Chem. Comm., 2001, 7: 617–618

    Google Scholar 

  19. [20]

    Worboys LM, Eawards PP, Anderson PA. Silver Nanowires: Inclusion in and Extrusion from a Mesoporous Template[J]. Chem. Comm., 2002, 23: 2 894–2 895

    Google Scholar 

  20. [21]

    Behrens S, Wu J, Habicht W, et al. Silver Nanoparticle and Nanowire Formation by Microtubule Templates[J]. Chem. Mater., 2004, 16: 3 085–3 090

    CAS  Google Scholar 

  21. [22]

    Edmondson MJ, Zhou W Z, Sieber S A, et al. Electron-beam Induced Growth of Bare Silver Nanowires from Zeolite Crystallites[J]. Adv. Mater., 2001, 21: 1 608–1 611

    Google Scholar 

  22. [23]

    Berchmans S, Nirmal RG, Prabaharan G, et al. Templated Synthesis of Silver Nanowires Based on the Layer-by-layer Assembly of Silver with Dithiodipropionic Acid Molecules as Spacers[J]. J. Colloid Interf. Sci., 2006, 2: 604–610

    Google Scholar 

  23. [24]

    Kundu S, Huitink D, Wang K, et al. Photochemical Formation of Electrically Conductive Silver Nanowires on Polymer Scaffolds[J]. J. Colloid Interf. Sci., 2010, 2: 334–342

    Google Scholar 

  24. [25]

    Keilbach A, Moses J, Koehn R, et al. Electrodeposition of Copper and Silver Nanowires in Hierarchical Mesoporous Silica/Anodic Alumina Nanostructures[J]. Chem. Mater., 2010, 19: 5 430–5 436

    Google Scholar 

  25. [26]

    Park SH, Shin HS, Kim YH, et al. Template-free and Filamentary Growth of Silver Nanowires: Application to Anisotropic Conductive Transparent Flexible Electrodes[J]. Nanoscale, 2013, 5: 1 864–1 869

    CAS  Google Scholar 

  26. [27]

    Yasui A, Iwasaji M, Kawahara T, et al. Color Properties of Gold-silver Alternate Nanowires Electrochemically Grown in the Pores of Aluminum Anodic Oxidation Film[J]. J. Colloid Interf. Sci., 2006, 2: 443–448

    Google Scholar 

  27. [28]

    Caswell KK, Bender CM, Murphy CJ. Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires[J]. Nano Lett., 2003, 5: 667–669

    Google Scholar 

  28. [29]

    Araki T, Jiu J, Nogi M, et al. Low Haze Transparent Electrodes and Highly Conducting Air Dried Films with Ultra-long Silver Nanowires Synthesized by One-step Polyol Method[J]. Nano Res., 2014, 2: 236–245

    Google Scholar 

  29. [30]

    Chen Y, Guan JG, Xie HQ. An Efficient Way to Prepare Silver Nanorods in High Concentration by Polyol Method without Adding Other Metal or Salt[J]. Mater. Chem. Phys., 2012, 2–3: 686–694

    Google Scholar 

  30. [31]

    Coskun S, Aksoy B, Unalan HE. Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study[J]. Cryst. Growth Des., 2011, 11: 4 963–4 969

    CAS  Google Scholar 

  31. [32]

    Sun YG, Xia YN. Large-scale Synthesis of Uniform Silver Nanowires through a Soft, Self-seeding, Polyol Process[J]. Adv. Mater., 2002, 14(11): 833–837

    CAS  Google Scholar 

  32. [33]

    Viau G, Piquemal JY, Esparrica M, et al. Formation of Assembled Silver Nanowires by Reduction of Silver Thiolate in Polyol/toluene Medium[J]. Chem. Comm., 2003, 17: 2 216–2 217

    Google Scholar 

  33. [34]

    Sun XM, Li YD. Cylindrical Silver Nanowires: Preparation, Structure, and Optical Properties[J]. Adv. Mater., 2005, 21: 2 626–2 630

    Google Scholar 

  34. [35]

    Tetsumto T, Gotoh Y, Ishiwatari T. Mechanistic Studies on the Formation of Silver Nanowires by a Hydrothermal Method[J]. J. Colloid Interf. Sci., 2011, 2: 267–273

    Google Scholar 

  35. [36]

    Schuette WM, Buhro WE. Silver Chloride as a Heterogeneous Nucleant for the Growth of Silver Nanowires[J]. ACS Nano, 2013, 5: 3 844–3 853

    Google Scholar 

  36. [37]

    Zhang SH, Jiang ZY, Xie ZX, et al. Growth of Silver Nanowires from Solutions: A Cyclic Penta-twinned-Crystal Growth Mechanism[J]. J. Phys. Chem. B, 2005, 19: 9 416–9 421

    Google Scholar 

  37. [38]

    Filleter T, Ryu S, Kang K, et al. Nucleation-Controlled Distributed Plasticity in Penta-twinned Silver Nanowires[J]. Small, 2012, 19: 2 986–2 993

    Google Scholar 

  38. [39]

    Chen D, Qiao XL, Qiu X, et al. Convenient Synthesis of Silver Nanowires with Adjustable Diameters via a Solvothermal Method[J]. J. Colloid Interf. Sci., 2010, 344: 286–291

    CAS  Google Scholar 

  39. [40]

    Sloan J, Wright DM, Woo HG, et al. Capillarity and Silver Nanowire Formation Observed in Single Walled Carbon Nanotubes[J]. Chem. Comm., 1999, 8: 699–700

    Google Scholar 

  40. [41]

    Luo LB, Yu SH, Qian HS, et al. Large Scale Synthesis of Uniform Silver@Carbon Rich Composite (Carbon and Cross-linked PVA) Sub-microcables by a Facile Green Chemistry Carbonization Approach[J]. Chem. Comm., 2006, 7: 793–795

    Google Scholar 

  41. [42]

    Kim CH, Cha SH, Kim SC, et al. Silver Nanowire Embedded in P3HT: PCBM for High-Efficiency Hybrid Photovoltaic Device Applications [J]. ACS Nano, 2011, 5: 3 319–3 325

    CAS  Google Scholar 

  42. [43]

    Kumar S, Lu YW, Huck A, et al. Propagation of Plasmons in Designed Single Crystalline Silver Nanostructures[J]. Opt. Express, 2012, 22: 24 614–24 622

    Google Scholar 

  43. [44]

    Hasse U, Palm GJ, Hinrichs W, et al. The Growth of Single Crystal Silver Wires at the Nitrobenzene Vertical Bar Water Interface[J]. Phys. Chem. Chem. Phys., 2011, 26: 12 254–12 260

    Google Scholar 

  44. [45]

    Wang ZH, Liu JW, Chen XY, et al. A Simple Hydrothermal Route to Large-scale Synthesis of Uniform Silver Nanowires[J]. Chem. Eur. J., 2005, 11(1): 160–163

    Google Scholar 

  45. [46]

    Tan M, Chen XQ. Growth Mechanism of Single Crystal Nanowires of fcc Metals (Ag, Cu, Ni) and hcp Metal (Co) Electrodeposited[J]. J. Electrochem. Soc., 2012, 1: K15–K20

    Google Scholar 

  46. [47]

    Zhu J, Xue D. Crystallography and Interfacial Kinetic Controlled Ultra-uniform Single Crystal Silver Nanobelts and Their Optical Properties[J]. Cryst. Eng. Comm., 2014, 4: 642–648

    Google Scholar 

  47. [48]

    Washio I, Xiong YJ, Yin YD, et al. Reduction by the End Groups of Poly(vinyl pyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates[J]. Adv. Mater., 2006, 13: 1 745–1 749

    Google Scholar 

  48. [49]

    Scanlan LD, Reed RB, Loguinov AV, et al. Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia Magna[J]. ACS Nano, 2013, 12: 10 681–10 694

    Google Scholar 

  49. [50]

    Gao Y, Jiang P, Liu DF, et al. Evidence for the Monolayer Assembly of Poly(vinylpyrrolidone) on the Surfaces of Silver Nanowires[J]. J. Phys. Chem. B, 2004, 34: 12 877–12 811

    Google Scholar 

  50. [51]

    Tao A, Kim F, Hess C, et al. Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-enhanced Raman Spectroscopy[J]. Nano Lett., 2003, 9: 1 229–1 233

    Google Scholar 

  51. [52]

    Korte KE, Skrabalak SE, Xia YN. Rapid Synthesis of Silver Nanowires through a CuCl- or CuCl2-mediated Polyol Process[J]. J. Mater. Chem., 2008, 4: 437–441

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bingxin Liu 刘秉鑫 or Jianguo Guan 官建国.

Additional information

Funded in Part by the National Natural Science Foundation of China (No.51521001), the Chunhui Program of the Ministry of Education of the People’s Republic of China (No. Z2015040) and the Natural Science Foundation of Qinghai Province (No. 2015-ZJ-946Q)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, J., Yang, R., Han, M. et al. Rational Synthesis of Cylindrical Silver Single-crystalline Nanowires via Poly(vinyl pyrrolidone) Reduction of AgCl. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 473–481 (2020). https://doi.org/10.1007/s11595-020-2281-x

Download citation

Key words

  • silver
  • nanowires
  • poly(vinyl pyrrolidone)
  • hydrothermal approach
  • self-assembly