Convenient Design of Hollow Co3O4 Nanostructure on Carbon Cloth for Flexible Supercapacitors


We proposed a new approach to construct zeolitic imidazolate frameworks-67 (ZIF-67) powders directly on carbon cloth without any conductive agent and adhesion agent and the ZIF-67 nanoparticles on carbon cloth were successfully converted into hollow Co3O4 nanostructure via a facile calcination process. Compared with original ZIF-67 powders, the Co3O4@CC electrode materials had admirable specific capacitance of 1 164.8 F·g−1 at an area current density of 2.5 mA·cm−2. Furthermore, the rate performance remained 42.4% of initial value when the current density was increased to 30 mA·cm−2 and the specific capacitance maintained 93.4% of initial capacity after 5 000 cycles at an area current density of 10 mA·cm−2. This strategy may have potential prospect for the application of MOFs in the energy storage and conversion field.

This is a preview of subscription content, log in to check access.


  1. [1]

    Chen S, Liu B, Wang Y, et al. Excellent Electrochemical Performances of Intrinsic Polyaniline Nanofibers Fabricated by Electrochemical Deposition [J]. J. of Wuhan University of Technology-Mater. Ed., 2019. 34(2): 216–222

    CAS  Article  Google Scholar 

  2. [2]

    Liu G, Kang C, Fang J, et al. MnO2 Nanosheet-coated CO3O4 Complex for 1.4 V Extra-high Voltage Supercapacitors Electrode Material[J]. Journal of Power Sources, 2019, 431: 48–54

    CAS  Article  Google Scholar 

  3. [3]

    Kaneti Y V, Dutta S, Hossain M S A, et al. Strategies for Improving the Functionality of Zeolitic Imidazolate Frameworks: Tailoring Nanoarchitectures for Functional Applications[J]. Adv. Mater., 2017: 29(38): 1 700–213

    Article  Google Scholar 

  4. [4]

    Thür R, Velthoven N Van, Slootmaekers S, et al. Bipyridine-based UiO-67 as Novel Filler in Mixed-matrix Membranes for CCVselective Gas Separation[J]. Journal of Membrane Science, 2019, 576: 78–87

    Article  Google Scholar 

  5. [5]

    Lin Y, Yin J, Li X, et al. Luminescent BODIPY-based Porous Organic Polymer for CO2 Adsorption[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(3): 440–445

    CAS  Article  Google Scholar 

  6. [6]

    Abánades Lázaro I, Forgan R S. Application of Zirconium MOFs in Drug Delivery and Biomedicine[J]. Coordination Chemistry Reviews, 2019, 380: 230–259

    Article  Google Scholar 

  7. [7]

    Yin M, Su Z, Cui B, et al. A New Type of Nanogel Carrier Based on Mixed Pluronic Loaded with Low-Dose Antitumor Drugs[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(6): 960–967

    CAS  Article  Google Scholar 

  8. [8]

    Zhang X, Yang Y, Song L, et al. High and Stable Catalytic Activity of Ag/Fe2O3 Catalysts Derived from MOFs for CO Oxidation[J]. Molecular Catalysis, 2018, 447: 80–89

    CAS  Article  Google Scholar 

  9. [9]

    Zheng X, Han Z, Yang W, et al. 3D Co3O4@MnO2 Heterostructures Grown on A Flexible Substrate and Their Applications in Supercapacitor Electrodes and Photocatalysts[J]. Dalton Trans., 2016, 45: 16 850–16 858

    CAS  Article  Google Scholar 

  10. [10]

    Fu K, Zhang R, He J, et al. Sensitive Detection of Ketamine with an Electrochemical Sensor Based on UV-induced Polymerized Molecularly Imprinted Membranes at Graphene and MOFs Modified Electrode[J]. Biosens Bioelectron, 2019, 143: 111 636

    CAS  Article  Google Scholar 

  11. [11]

    Liang Y, Yang Y, Xu K, et al. Controllable Preparation of Faceted Co3O4 Nanocrystals@MnO2 Nanowires Shish-kebab Structures with Enhanced Triethylamine Sensing Performance[J]. Sensors and Actuators B: Chemical, 2020, 304: 127 358

    Article  Google Scholar 

  12. [12]

    Qian J, Sun F, Qin L. Hydrothermal Synthesis of Zeolitic Imidazolate Framework-67 (ZIF-67) Nanocrystals[J]. Materials Letters, 2012, 82: 220–223

    CAS  Article  Google Scholar 

  13. [13]

    Jiang Z, Li Z, Qin Z, et al. LDH Nanocages Synthesized with MOF Templates and Their High Performance as Supercapacitors[J]. Nanoscale, 2013, 5: 11 770–11 775

    CAS  Article  Google Scholar 

  14. [14]

    Wu R, Qian X, Rui X, et al. Zeolitic Imidazolate Framework 67-derived High Symmetric Porous Co3O4 Hollow Dodecahedra with Highly Enhanced Lithium Storage Capability[J]. Small, 2014, 10: 1 932–1 938

    CAS  Article  Google Scholar 

  15. [15]

    Tan Y Chuan, Zeng H Chun. Self-templating Synthesis of Hollow Spheres of MOFs and Their Derived Nanostructures[J]. Chem. Commun, 2016, 52: 11 591–11 594

    Article  Google Scholar 

  16. [16]

    Guan C, Sumboja A, Wu H, et al. Hollow Co3O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc-Air Batteries[J]. Adv. Mater., 2017, 29: 1 704–117

    Google Scholar 

  17. [17]

    Hu H, Guan B, Xia B, et al. Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties[J]. J. Am. Chem. Soc., 2015, 137: 5 590–5 595

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Qiming Liu 刘启明.

Additional information

Funded by the National Natural Science Foundation of China (No.51572202), the National Science Foundation of Jiangsu Province (No. BK20171234) and the Foundation of Science and Technology on Plasma Physics Laboratory (No. 6142A0403050617)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Li, H., Zhou, H. et al. Convenient Design of Hollow Co3O4 Nanostructure on Carbon Cloth for Flexible Supercapacitors. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 469–472 (2020).

Download citation

Key words

  • metal-organic frameworks
  • ZIF-67
  • Co3O4
  • electrochemical
  • supercapacitors