Skip to main content
Log in

Influence of Replacement Level of Coal-series Kaolin on Hydration of Ordinary Portland Cement by X-ray Diffraction/Rietveld Method

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The influence of replacement level of calcined coal-series kaolin (CCK) on hydration of ordinary Portland cement (OPC) was studied by X-ray diffraction(XRD)/Rietveld method. X-ray diffraction/Rietveld method was used to quantify the crystalline phase composition of the hydrated samples. Additionally, the morphology of hydrated samples was observed by scanning electron microscopy (SEM). The results showed that, calcium hydroxide (CH), ettringite (AFt) and amorphous phase content in hydrated samples decreased as the replacement level of CCK increased, while AFm and strätlingite increased, which was caused by the combination of dilute, physical and pozzolanic effects. The hydration of anhydrous cement phases was accelerated by physical effect but hindered by the retardation effect of CCK. The role of each effects was discussed in detail to analyze the mechanism of OPC hydration with CCK addition. The SEM images showed that the shortening of AFt at 1 day and the denser texture at 28 days was observed with CCK addition, which was caused by the physical and pozzolanic effects, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jansen D, Goetz-Neunhoeffer F, Stabler C, et al. A Remastered External Standard Method Applied to the Quantification of Early OPC Hydration[J]. Cem. Concr. Res., 2011, 41: 602–608

    Article  Google Scholar 

  2. Guirado F, Galí S, Chinchón S. Quantitative Rietveld Analysis of Aluminous Cement Clinker Phases[J]. Cem. Concr Res., 2000, 30: 1 023–1 029

    Article  Google Scholar 

  3. Bish DL, Howard SA. Quantitative Phase Analysis Using the Rietveld Method[J]. J. Appl. Cryst., 1988, 21: 86–91

    Article  Google Scholar 

  4. Snellings R, Bazzoni A, Scrivener K. The Existence of Amorphous Phase in Portland Cements: Physical Factors Affecting Rietveld Quantitative Phase Analysis[J]. Cem. Concr Res., 2014, 59: 139–146

    Article  Google Scholar 

  5. álvarez-Pinazo G, Cuesta A, García-Maté M, et al. Rietveld Quantitative Phase Analysis of Yeelimite-containing Cements[J]. Cem. Concr. Res., 2012, 42: 960–971

    Article  Google Scholar 

  6. Scrivener KL, Füllmann T, Gallucci E, et al. Quantitative Study of Portland Cement Hydration by X-ray Diffraction/Rietveld Analysis and Independent Methods[J]. Cem. Concr Res., 2004, 34: 1 541–1 547

    Article  Google Scholar 

  7. Wild S, Khatib JM, Jones A. Relative Strength, Pozzolanic Activity and Cement Hydration in Superplasticised Metakaolin Concrete[J]. Cem. Concr. Res., 1996, 26: 1 537–1 544

    Article  Google Scholar 

  8. Sabir BB, Wild S, Bai J. Metakaolin and Calcined Clays as Pozzolans for Concrete: a Review[J].Cem. Concr Compos., 2001, 23: 441–454

    Article  Google Scholar 

  9. Cyr M, Lawrence P, Ringot E. Efficiency of Mineral Admixtures in Mortars: Quantification of the Physical and Chemical Effects of Fine Admixtures in Relation with Compressive Strength[J]. Cem. Concr. Res., 2006, 36: 264–277

    Article  Google Scholar 

  10. Liu Y, Lei S, Lin M, et al. Assessment of Pozzolanic Activity of Calcined Coal-series Kaolin[J]. Appl. Clay Sci., 2017, 143: 159–167

    Article  Google Scholar 

  11. Young RA, Wiles DB. Profile Shape Functions in Rietveld Refinements[J]. J. Appl. Cryst., 1982, 15: 430–438

    Article  Google Scholar 

  12. Wiles DB, Young RA. A New Computer Program for Rietveld Analysis of X-ray Powder Diffraction Patterns[J]. J. Appl. Cryst., 1981, 14: 149–151

    Article  Google Scholar 

  13. de La Torre AG, Bruque S, Campo J, et al. The Superstructure of C3S from Synchrotron and Neutron Powder Diffraction and Its Role in Quantitative Analysis[J]. Cem. Concr Res., 2002, 32: 1 347–1 356

    Article  Google Scholar 

  14. Jost KH, Ziemer B, Seydel R. Redetermination of the Structure of β-Dicalcium Silicate[J]. Acta Crystallogr. B, 1977, 33: 1 696–1 700

    Article  Google Scholar 

  15. Colville AA, Geller S. The Crystal Structure of Brownmillerite, Ca2Fe-AlO5[J]. Acta Crystallogr. B, 1971, 27: 2 311–2 315

    Article  Google Scholar 

  16. Mondal P, Jeffery JW. The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6[J]. Acta Crystallogr. B, 1975, 31: 689–697

    Article  Google Scholar 

  17. de la Torre AG, Lopez-Olmo M-G, Alvarez-Rua C, et al. Structure and Microstructure of Gypsum and Its Relevance to Rietveld Quantitative Phase Analyses[J]. Powder Diffr., 2004, 19: 240–246

    Article  Google Scholar 

  18. Wartchow R. Datensammlung Nach der “Learnt Profile”-Methode(LP) Fur Calcit und Vergleich Mit der “Background Peak Background”-Methode (BPB) [J]. Zeit. Kristall., 1989, 186: 300–302

    Google Scholar 

  19. Jorgensen JD. Compression Mechanisms in Alpha-quartz Structures-SiO2 and GeO2[J]. J. Appl. Phys., 1978, 49: 5 473–5 478

    Article  Google Scholar 

  20. Goetz-Neunhoeffer F, Neubauer J. Refined Ettringite Structure for Quantitative X-ray Diffraction Analysis[J]. Powder Diffr., 2006, 21: 4–10

    Article  Google Scholar 

  21. Allmann R. Refinement of the Hybrid Layer Structure (Ca2Al(OH)6)+ (0.5SO4•3H2O)-[J]. Neues Jahrb. Mineral. Monatsh., 1977, 3: 136–144

    Google Scholar 

  22. Busing WR, Levy HA. Neutron Diffraction Study of Calcium Hydroxide[J]. J. Chem. Phys., 1957, 26: 563–568

    Article  Google Scholar 

  23. Rinaldi R, Sacerdoti M. Strätlingite: Crystal Structure, Chemistry, and a Reexamination of Its Polytype Vertumnite[J]. Eur. J. Mineral., 1990, 2(6): 841–849

    Article  Google Scholar 

  24. Taylor D. Thermal Expansion Data. I. Binary Oxides with the Sodium Chloride and Wurtzite Structure, MO[J]. Trans. J. Brit. Ceram. Soc., 1984, 83: 5–9

    Google Scholar 

  25. Albertsson J, Abrahams SC, Kvick A. Atomic Displacement, Anharmonic Thermal Vibration, Expansivity and Pyroelectric Coefficient Thermal Dependences in ZnO[J]. Acta Crystallogr. B, 1989, 45: 34–40

    Article  Google Scholar 

  26. Badogiannis E, Kakali G, Dimopoulou G, et al. Metakaolin as a Main Cement Constituent. Exploitation of Poor Greek Kaolins[J]. Cem. Concr. Compos., 2005, 27: 197–203

    Article  Google Scholar 

  27. AQSIQ, SAC. Quantitative Determination of Constituents of Cement[S]. GB/T 12960–2007, 2007

  28. Murat M. Hydration Reaction and Hardening of Calcined Clays and Related Minerals. I. Preliminary Investigation on Metakaolinite[J]. Cem. Concr. Res., 1983, 13: 259–266

    Article  Google Scholar 

  29. Wang X, Lee H. Modeling the Hydration of Concrete Incorporating Fly Ash or Slag[J]. Cem. Concr. Res., 2010, 40: 984–996

    Article  Google Scholar 

  30. Han J, Wang K, Shi J, et al. Influence of Sodium Aluminate on Cement Hydration and Concrete Properties[J]. Constr. Build. Mater., 2014, 64: 342–349

    Article  Google Scholar 

  31. Habert G, Choupay N, Escadeillas G, et al. Clay Content of Argillites: Influence on Cement Based Mortars[J]. Appl. Clay Sci., 2009, 43: 322–330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomin Lei  (雷绍民).

Additional information

Funded by the Academician Workstation of Yichang Huilong Science and Technology Co., Ltd. Association of Science and Technology of Hubei Province (No.2013]104-22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lei, S., Li, Y. et al. Influence of Replacement Level of Coal-series Kaolin on Hydration of Ordinary Portland Cement by X-ray Diffraction/Rietveld Method. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 614–621 (2019). https://doi.org/10.1007/s11595-019-2095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2095-x

Key words

Navigation