Skip to main content
Log in

Isothermal Adsorption Characteristics and Kinetics of Cr Ions onto Ettringite

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The isothermal absorption properties and kinetic model of Cr (VI) and Cr (III) onto ettringite were investigated using the batch adsorption method. IR analysis was used to study the difference and mechanism of the adsorption of chromium ions with different valence states. The results show that the adsorption of Cr(III) onto ettringite at 20 °C agrees with Langmuir’s isothermal model. The ion binding stability was significantly greater than that of Cr (VI). While the adsorption of Cr(VI) onto ettringite agrees with Freundlich’s isothermal model, the D-R model fits the adsorption isotherms of two types of valence Cr (R2> O.994). It can be concluded that the adsorption of Cr (III) onto ettringite is mainly by chemical adsorption and that the adsorption of Cr (VI) onto ettringite is mainly by physical adsorption. Dynamic model fitting and model parameter analyses show that the adsorption of Cr (III) onto ettringite agrees with the pseudo second order kinetics model given by Lagergren. The formation of chemical bonds is the main factor causing the fast adsorption. Cr (VI) adsorption is mainly dominated by liquid film diffusion, and the adsorption rate is much slower than that of Cr (III) adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi Hui-sheng, Yuan Ling. Safety Assessment for Municipal Solid Wastes Incineration Fly Ashes-Cement Solidification Body[J]. Journal of Tongji, 2005, 33(3): 326–329

    Google Scholar 

  2. Wang Jiyuan. Research on Cement Solidification Experiment of Electroplation Heavy Metal Sludge[J]. Chemical Industry Times, 2006, 20(1): 44–47

    Google Scholar 

  3. Peng Chuan, Feng Qinge, Li Haoxuan. Leachablity and Speciation Analysis of Cr in Tannery Sludge after Cementation Treatment[J]. Bulletin of the Chinese Creamic Society, 2014, 33 (9): 2 205–2 211

    Google Scholar 

  4. Vempati RK, Mollah MYA, Chinthala AK, et al. Solidification/Stabilization of Toxic Metal Wastes Using Coke and Coal Combustion by-Products[J]. Waste Management, 1995, 15(5–6): 433–440

    Article  Google Scholar 

  5. IkJunYeon, Soyoung, 이상우, 신택수, et al. The Solidification Characteristics of Recycled Aggregate Mixed with Incineration Ash and Waste Concrete[J]. Journal of the Korean Geoenvironmental Society, 2008, 9(5): 5–13

    Google Scholar 

  6. Qian GR, Hi J, Cao Y L, Xu YF, et al. Properties of MSW Fly Ash-calcium Sulfoaluminate Cement Matrix and Stabilization/Solidification on Heavy Metals[J]. Journal of Hazardous Materials, 2008, 152(1): 196–203

    Article  Google Scholar 

  7. S Peysson, J Péra, M Chabannet. Immobilization of Heavy Metals by Calcium Sulfoaluminate Cement[J]. Cement and Concrete Research, 2005, 35 (12): 2 261–2 270

    Article  Google Scholar 

  8. M L D Gougar, B E Scheetz, D M Roy. Ettringite and C-S—H Portland Cement Phases for Waste Iron Immobilization: A Review[J]. Waste Management, 1996, 16(4): 295–303

    Article  Google Scholar 

  9. Bhishan Pandey, Stephen D, Kinrade, et al. Effects of Carbonation on the Leach Ability and Compressive Strength of Cement-Solidified and Geopolymer-Solidified Synthetic Metal Wastes[J]. Journal of Environmental Management, 2012, 101(30): 59–67

    Article  Google Scholar 

  10. Klemm W A, Bhatty J I. Fixation of Heavy Metals as Oxyan- Ion-Substituted Ettringites[J]. Portland Cement Association, 2002: 9–10

  11. Albino V, Cioffi R, Maroccoli M, et al. Potential Application of Ettringite Generating Systems for Hazardous Waste Stabilization[J]. Journal of Hazardous Material, 1996, 51(1–3): 241–252

    Article  Google Scholar 

  12. Li XG, He C, Bai Y, et al. Stabilization/Solidification on Chromium (III) Wastes by C3A and C3A Hydrated Matrix[J]. Journal Of Hazardous Materials, 2014, 268: 61–67

    Article  Google Scholar 

  13. Maria Chrysochoou, Dimitris Dermatas. Evaluation of Ettringite and Hydrocalumite Formation for Heavy Metal Immobilization: Literature Review and Experimental Study[J]. Journal of Hazardous Materials, 2006, 136(1): 20–33

    Article  Google Scholar 

  14. Martin Vyšvařil, Patrik Bayer. Immobilization of Heavy Metals in Natural Zeolite-blended Cement Pastes[J]. Procedia Engineering, 2016, 151: 162–169

    Article  Google Scholar 

  15. Zbigniew Giergiczny, Anna Król. Immobilization of Heavy Metals (Pb, Cu, Cr, Zn, Cd, Mn) in the Mineral Additions Containing Concrete Composites[J]. Hazardous Materials, 2008, 160(30): 247–255

    Article  Google Scholar 

  16. R Berardi, R Cioffi, L Santoro. Matrix Stability and Leaching Behaviour in Ettringite-Based Stabilization Systems Doped with Heavy Metals[J]. Waste Management, 1998,17(8): 535–540

    Article  Google Scholar 

  17. C A Luz, J Pera, M Cheriaf, et al. Behaviour of Calcium Sulfoaluminate Cement in Presence of High Concentrations of Chromium Salts[J]. Cement and Concrete Research, 2007, 37(4): 624–629

    Article  Google Scholar 

  18. Nocuń-Wczelik Wiesława, Trybalska Barbara, Dziub Sylwia. The Properties of Cement Pastes and Mortars Processed with Some Heavy Metal Nitrates Containing Solutions[J]. Procedia Engineering, 2015, 108: 72–79

    Article  Google Scholar 

  19. V Albino, R Cioffi, M Marroccoli, et al. Potential Application of Ettringite Generating Systems for Hazardous Waste Stabilization[J]. Journal of Hazardous Materials,1996, 51(1–3): 241–252

    Article  Google Scholar 

  20. Jacobsen S D, Smyth JR, Swope R J. Thermal Expansion of Hydrated Six-Coordinate Silicon in the Umasite Ca3Si(OH)6(CO3) (SO4)•12H2O[J]. Phys. Chem. Minerals, 2003 (30): 321–329

    Google Scholar 

  21. Li Zongjin, Wei Xiaosheng, Li Wenlai. Preliminary Interpretat Ion of Hydration Process of Portland Cement Using Resistivity Measurement[J]. ACI Mater. J., 2003, 100(3): 253–257

    Google Scholar 

  22. Lan Junkang, Wang Yanxin. The Influence of SO4 2− on Compound Cement Solidified Deals With Cr (VI)[J]. Journal of the Chinese Ceramic Society, 2005, 33(10): 1 266–1 275

    Google Scholar 

  23. Maria Chrysochoou, Dimitris Dermatas. Evaluation of Ettringite and Hydrocalumite Formation for Heavy Metal Immobilization: Literature Review and Experimental Study[J]. Journal of Hazardous Materials, 2006, 136(1): 20–33

    Article  Google Scholar 

  24. Srivastava P, Singh B, Angove M. Competitive Adsorption Behavior of Heavy Metals on Kaolinite[J]. Journal of Colloid and Interface Science, 2005, 290(1): 28–38

    Article  Google Scholar 

  25. Behera S K, Kim J H, Guo X, et al. Adsorption Equilibrium and Kinetics of Polyvinyl Alcohol from Aqueous Solution on Powdered Activated Carbon[J]. Journal of Hazardous Materials, 2008, 153: 1 207–1 214

    Article  Google Scholar 

  26. Rey F, Calle E., Casado J. Study of the Effects of Concentration and pH on the Dissociation Kinetics of Fe(II)-Fulvic Acid Complexes[J]. International Journal of Chemical Kinetics, 1998,30: 63–67

    Article  Google Scholar 

  27. Namasivayam C, Jeyakumar R, Yamuna R T. Dye Removal from Waste-Water by Adsorption on Waste Fe(III)/Cr(III) Hydroxide[J]. Waste Management, 1994, 14(7): 643–648

    Article  Google Scholar 

  28. Namasivayam C, Yamuna R T, Jayanthi J. Removal of Methylene Blue from Wastewater by Adsorption on Cellulosic Waste, Orange Peel[J]. Cellulose Chemistry and Technology, 2003, 37(7): 333–339

    Google Scholar 

  29. F A Banat, B Al-Bashir, S Al-Asheh, et al. Adsorption of Phenol by Bentonite[J]. Environmental Pollution, 2000, 107 (3): 391–398

    Article  Google Scholar 

  30. Do D D. Adsorption Analysis: Equilibria and Kinetics[M]. London: Imperical College Press, 1998

    Book  Google Scholar 

  31. Majumadar S S, Dad S K, Chakravaty, et al. Study on Lead Adsorption by Mucor Rouxii Biomass[J]. Desalination, 2010, 251: 96–102

    Article  Google Scholar 

  32. Hameed B H, Salman J M, Ahamada A L. Adsorption Isotherm and Kinetic Modeling of 2, 4-D Pesticide on Activated Carbon Derived from Date Stones[J]. Journal of Hazardous Materials, 2009, 163: 121–126

    Article  Google Scholar 

  33. Özcana A, Öncu E M, Özcan A S. Kinetics, Isotherm and the Dynamic Studies of Adsorption of Acid Blue 193 from Aqueous Solutions onto Natural Sepiolite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277(1/2/3): 90–97

    Article  Google Scholar 

  34. Gezginci M H, Timmermann B N. A Short Synthetic Route to Nordihydroguaiaretic Acid and Its Stereoisomer Using Ti-Induced Carbonyl-Coupling Reaction[J]. Tetrahedron Letters, 2001, 42(35): 6 083–6 085

    Article  Google Scholar 

  35. Kandah M I. Zinc and Cadmium Adsorption on Low-Grade Phosphate[J]. Sep. Purif. Technol., 2004, 35(1): 61–70

    Article  Google Scholar 

  36. F A Banat, B Al-Bashir, S Al-Asheh, et al. Adsorption of Phenol by Bentonite[J]. Environmental Pollution, 2000, 107(3): 391–398

    Article  Google Scholar 

  37. Aharoni C D, Sparks L, Levinson S. Kinetics of Soil Chemical Reactions: Relationships Between Empirical Equations and Diffusion Models[J]. Soil Science Society of American Journal, 1991, 55: 1 307–1 310

    Article  Google Scholar 

  38. Ho Y S. Citation Review of Lagergren Kinetic Rate Equationon Adsorption Reactions[J]. Scienctometrics, 2004, 9(1): 171–177

    Google Scholar 

  39. Gupta V K, Gupta M, Sharma S. Process Development for the Removal of Lead and Chromium from Aqueous Solutions Using Red-Mud-An Aluminium Industry Waste[J]. Water Research, 2001, 35(5): 1 125–1 134

    Article  Google Scholar 

  40. Ho Y S, Mckay G. Pseudo-Second-Order Model for Sorption Process[J]. Process Biochemistry, 1999, 34(5): 451–465

    Article  Google Scholar 

  41. Gupta V K, Rastogi A. Equilibrium and Kinetic Modeling of Cadmium(II) Biosorption by Nonliving Gal Biomass Oedo Gonium sp. From a Queous Phase[J]. Journal of Hazardous Materials, 2008, 153(1–2): 759–766

    Article  Google Scholar 

  42. Sun Xiao-Li, Zeng Qing-xuan, Feng Chang-gen. Adsorption Kinetics of Chromium (VI) onto an Anion Exchange Fiber Containing Polyamine[J]. Acta Physico-Chimica Sinica, 2009, 25(10): 1 951–1 957

    Google Scholar 

  43. Ho Y S, McKay G. Pseudo-Second Order Model for Sorption Processes[J]. Process Biochem., 1999, 34(5): 451–465

    Article  Google Scholar 

  44. A E Moor, H F W Taylor. Acta Crystallographica. Section B[M]. Malden: International Union of Crystallography, 1970

    Google Scholar 

  45. A M Cody, H Lee. The Effect of Environment on the Nucleation,Growth, and Stability of Ettringite {Ca2Al(OH)6]2·(SO4)3·26H2O[J]}. Cement and Concrete Research, 2004, 34: 869–881

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suping Cui  (崔素萍).

Additional information

Supported by the National Natural Science Foundation of China (No. 2010CB735803)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cui, S., Yan, B. et al. Isothermal Adsorption Characteristics and Kinetics of Cr Ions onto Ettringite. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 587–595 (2019). https://doi.org/10.1007/s11595-019-2092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2092-0

Key words

Navigation