Skip to main content
Log in

Synthesis, Characterization and Adsorption Properties of Low-cost Porous Calcined Dolomite Microspheres for Removal of Dyes

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Low-cost porous calcined dolomite microspheres were prepared by simple spray drying and subsequent calcination. Effects of calcination temperature on phase evolution and adsorption properties of MB were investigated systematically. Results showed that microspheres treated at 400 °C kept mainly calcium carbonate (CaMg (CO3)) phase with some small pores, showing better removal efficiency for MB. With the dosage of 20 g/L under the starting concentration of 100 mg/L, the removal efficiency of the microspheres reached 95.6%. The adsorption kinetics data followed the pseudo-second-order kinetic model, and the isotherm data fit the Langmuir isotherm model. The low-cost microsphere could be applied as a promising absorbent for dyes in wastewater filtration and adsorption treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martínez-Huitle C A, Brillas E. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: a General Review[J]. Applied Catalysis B: Environmental, 2009, 87(3–4): 105–145

    Article  Google Scholar 

  2. Rafatullah M, Sulaiman O, Hashim R et al. Adsorption of Methylene Blue on Low-cost Adsorbents: a Review[J]. Journal of Hazardous Materials, 2010, 177(1–3): 70–80

    Article  Google Scholar 

  3. Oller I, Malato S, Sánchez-Pérez J A. Combination of Advanced Oxidation Processes and Biological Treatments for Wastewater Decontamination-a Review[J]. Science of the Total Environment, 2011, 409(20): 4 141–4 166

    Article  Google Scholar 

  4. Pant D, Adholeya A. Biological Approaches for Treatment of Distillery Wastewater: a Review[J]. Bioresource Technology, 2007, 98(12): 2 321–2 334

    Article  Google Scholar 

  5. Mohan D, Singh K P, Singh V K. Removal of Hexavalent Chromium from Aqueous Solution Using Low-cost Activated Carbons Derived from Agricultural Waste Materials and Activated Carbon Fabric Cloth[J]. Industrial & Engineering Chemistry Research, 2005, 44(4): 1 027–1 042

    Article  Google Scholar 

  6. Singh K P, Mohan D, Sinha S, et al. Color Removal from Wastewater Using Low-cost Activated Carbon Derived from Agricultural Waste Material[J]. Industrial & Engineering Chemistry Research, 2003, 42(9): 1 965–1 976

    Article  Google Scholar 

  7. Foo K Y, Hameed B H. An Overview of Landfill Leachate Treatment via Activated Carbon Adsorption Process[J]. Journal of Hazardous Materials, 2009, 171(1): 54–60

    Article  Google Scholar 

  8. Bessa L P, Terra N M, Cardoso V L, et al. Macro-porous Dolomite Hollow Fibers Sintered at Different Temperatures Toward Widened Applications[J]. Ceramics International, 2017, 43(18): 16 283–16 291

    Article  Google Scholar 

  9. Zheng R, Gao H, Guan J, et al. Characteristics of Cationic Red X-GRL Adsorption by Diatomite tailings[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(5): 1 038–1 047

    Article  Google Scholar 

  10. Yagub M T, Sen T K, Afroze S, et al. Dye and Its Removal from Aqueous Solution by Adsorption: A Review[J]. Adv. Colloid Interface Sci., 2014, 209(7): 172

    Article  Google Scholar 

  11. Ekholm P, Kallio K, Turtola E, et al. Adsorption of Cu2+ and Pb2+ Ion on Dolomite Powder.[J]. Journal of Hazardous Materials, 2009, 167(1): 1 044–1 049

    Google Scholar 

  12. Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M. Characterizations of Strontium(II) and Barium(II) Adsorption from Aqueous Solutions Using Dolomite Powder[J]. Journal of Hazardous Materials, 2011, 190(1–3): 916–921

    Article  Google Scholar 

  13. Walker G M, Hansen L, Hanna J A, et al. Kinetics of a Reactive Dye Adsorption onto Dolomitic Sorbents[J]. Water Research, 2003, 37(9): 2 081–2 089

    Article  Google Scholar 

  14. Boucif F, Marouf-Khelifa K, Batonneau-Gener I, et al. Preparation, Characterisation of Thermally Treated Algerian Dolomite Powders and Application to Azo-dye Adsorption[J]. Powder Technology, 2010, 201(3): 277–282

    Article  Google Scholar 

  15. Yin Y, Lu Y, Gates B, et al. Synthesis and Characterization of Mesoscopic Hollow Spheres of Ceramic Materials with Functionalized Interior Surfaces[J]. Chemistry of Materials, 2001, 13(4): 1 146–1 148

    Article  Google Scholar 

  16. Cheow W S, Li S, Hadinoto K. Spray Drying Formulation of Hollow Spherical Aggregates of Silica Nanoparticles by Experimental Design[J]. Chemical Engineering Research and Design, 2010, 88(5–6): 673–685

    Article  Google Scholar 

  17. Katona B, Szebényi G, Orbulov I N. Fatigue Properties of Ceramic Hollow Sphere Filled Aluminium Matrix Syntactic Foams[J]. Materials Science and Engineering: A, 2017, 679: 350–357

    Article  Google Scholar 

  18. Song X, Gao L. Fabrication of Hollow Hybrid Microspheres Coated with Silica/Titania via Sol- Gel Process and Enhanced Photocatalytic Activities[J]. The Journal of Physical Chemistry C, 2007, 111(23): 8 180–8 187

    Article  Google Scholar 

  19. Yu F, Zhang J, Yang Y, et al. Preparation and Characterization of Mesoporous LiFePO4/C Microsphere by Spray Drying Assisted Template Method[J]. Journal of Power Sources, 2009, 189(1): 794–797

    Article  Google Scholar 

  20. Stunda-Zujeva A, Irbe Z, Berzina-Cimdina L. Controlling the Morphology of Ceramic and Composite Powders Obtained via Spray Drying-A Review[J]. Ceramics International, 2017, 43: 11 543–11 551

    Article  Google Scholar 

  21. Pal M, Wan L, Zhu Y, et al. Scalable Synthesis of Mesoporous Titania Microspheres via Spray-drying Method[J]. Journal of Colloid and Interface Science, 2016, 479: 150–159

    Article  Google Scholar 

  22. Tao H, Xiong L, Zhu S, et al. Porous Si/C/reduced Graphene Oxide Microspheres by Spray Drying as Anode for Li-ion Batteries[J]. Journal of Electroanalytical Chemistry, 2017, 797: 16–22

    Article  Google Scholar 

  23. Jiao Y, Lu Y P, Xiao G Y, et al. Preparation and Characterization of Hollow Hydroxyapatite Microspheres by the Centrifugal Spray Drying Method[J]. Powder Technology, 2012, 217: 581–584

    Article  Google Scholar 

  24. Qi F, Xu X, Xu J, et al. A Novel Way to Prepare Hollow Sphere Ceramics[J]. Journal of the American Ceramic Society, 2014, 97(10): 3 341–3 347

    Article  Google Scholar 

  25. Wang A, Lu Y, Zhu R, et al. Effect of Process Parameters on the Performance of Spray Dried Hydroxyapatite Microspheres[J]. Powder Technology, 2009, 191(1–2): 1–6

    Article  Google Scholar 

  26. Rafatullah M, Sulaiman O, Hashim R, et al. Adsorption of Methylene Blue on Low-cost Adsorbents: a Review[J]. Journal of Hazardous Materials, 2010, 177(1–3): 70–80

    Article  Google Scholar 

  27. Yang J, Cai K, Xi X, et al. Process and Device for the Preparation of Hollow Microspheres Comprising Centrifugal Atomization[P]. U.S. Patent 8 845 936, 2 014-9–2 030

  28. Qu Y N, Xu J, Su Z G, et al. Lightweight and High-strength Glass Foams Prepared by a Novel Green Spheres Hollowing Technique[J]. Ceramics International, 2016, 42(2): 2 370–2 377

    Article  Google Scholar 

  29. Cao X Q, Vassen R, Schwartz S, et al. Spray-drying of Ceramics for Plasma-spray Coating[J]. Journal of the European Ceramic Society, 2000, 20(14–15): 2 433–2 439

    Article  Google Scholar 

  30. Lukasiewicz S J. Spray-drying Ceramic Powders[J]. Journal of the American Ceramic Society, 1989, 72(4): 617–624

    Article  Google Scholar 

  31. Messing G L, Zhang S C, Jayanthi G V. Ceramic Powder Synthesis by Spray Pyrolysis[J]. Journal of the American Ceramic Society, 1993, 76(11): 2 707–2 726

    Article  Google Scholar 

  32. Ruan S, Liu J, Yang E H, et al. Performance and Microstructure of Calcined Dolomite and Reactive Magnesia-Based Concrete Samples[J]. Journal of Materials in Civil Engineering, 2017, 29(12): 04 017 236

    Article  Google Scholar 

  33. Wang H, Liu H, Xie J, et al. An insight into the Carbonation of Calcined Clayey Dolomite and Its Performance to Remove Cd (II)[J]. Applied Clay Science, 2017, 150: 63–70

    Article  Google Scholar 

  34. Albadarin A B, Mangwandi C, Al-Muhtaseb A H, et al. Kinetic and Thermodynamics of Chromium Ions Adsorption onto Low-cost Dolomite Adsorbent[J]. Chemical Engineering Journal, 2012, 179(1): 193–202

    Article  Google Scholar 

  35. Vimonses V, Lei S, Jin B, et al. Adsorption of Congo Red by Three Australian Kaolins[J]. Applied Clay Science, 2009, 43(3–4): 465–472

    Article  Google Scholar 

  36. Ziane S, Bessaha F, Marouf-Khelifa K, et al. Single and Binary Adsorption of Reactive Black 5 and Congo Red on Modified Dolomite: Performance and Mechanism[J]. Journal of Molecular Liquids, 2018, 249: 1 245–1 253

    Article  Google Scholar 

  37. Ma N, Deng Y, Liu W, et al. A One-step Synthesis of Hollow Periodic Mesoporous Organosilica Spheres with Radially Oriented Mesochannels [J]. Chemical Communications, 2016, 52(17): 3 544–3 547

    Article  Google Scholar 

  38. Liu W, Ma N, Li S, et al. A One-step Method for Pore Expansion and Enlargement of Hollow Cavity of Hollow Periodic Mesoporous Organosilica Spheres[J]. Journal of Materials Science, 2016: 1–11

  39. Li LH, Xiao J, Liu P, et al. Super Adsorption Capability from Amorphousization of Metal Oxide Nanoparticles for Dye Removal[J]. Scientific Reports, 2015; 5: 9 028

    Article  Google Scholar 

  40. Hassan A F, Elhadidy H. Production of Activated Carbons from Waste Carpets and Its Application in Methylene Blue Adsorption: Kinetic and Thermodynamic Studies[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 955–963

    Article  Google Scholar 

  41. Li Q, Li Y, Ma X, et al. Filtration and Adsorption Properties of Porous Calcium Alginate Membrane for Methylene Blue Removal from Water[J]. Chemical Engineering Journal, 2017, 316: 623–630

    Article  Google Scholar 

  42. Hu Y, Quan C, Guo M, et al. Preparation of Fe3O4-octadecyltrichlorosilane for Removal of Methyl Orange and Methylene Blue: Influence of pH and Ionic Strength on Competitive Adsorption[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(6): 1 413–1 419

    Article  Google Scholar 

  43. Xu N, Liu Z, Dong Y, et al. Controllable Synthesis of Mesoporous Alumina with Large Surface Area for High and Fast Fluoride Removal[J]. Ceramics International, 2016, 42(14): 15 253–15 260

    Article  Google Scholar 

  44. Wang S, Ma Q, Zhu Z H. Characteristics of Coal Fly Ash and Adsorption Application[J]. Fuel, 2008, 87(15–16): 3 469–3 473

    Article  Google Scholar 

  45. Ali I. New Generation Adsorbents for Water Treatment[J]. Chemical Reviews, 2012, 112(10): 5 073–5 091

    Article  Google Scholar 

  46. Gupta V K, Suhas, Ali I, et al. Removal of Rhodamine B, Fast Green, and Methylene Blue from Wastewater Using Red Mud, an Aluminum Industry Waste[J]. Industrial & Engineering Chemistry Research, 2004, 43(7): 1 740–1 747

    Article  Google Scholar 

  47. Gürses A, Doğar Ç, Yalçın M, et al. The Adsorption Kinetics of the Cationic Dye, Methylene Blue, onto Clay[J]. Journal of Hazardous Materials, 2006, 131(1–3): 217–228

    Article  Google Scholar 

  48. Tan I A W, Ahmad A L, Hameed B H. Adsorption of Basic Dye Using Activated Carbon Prepared from Oil Palm Shell: Batch and Fixed Bed Studies[J]. Desalination, 2008, 225(1–3): 13–28

    Article  Google Scholar 

  49. Fu Y, Viraraghavan T. Removal of a Dye from an Aqueous Solution by the Fungus Aspergillus Niger[J]. Water Quality Research Journal of Canada, 2000, 35(1): 95–111

    Article  Google Scholar 

  50. Kannan N, Sundaram M M. Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons-a Comparative Study[J]. Dyes and Pigments, 2001, 51(1): 25–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Yang  (杨金龙).

Additional information

Funded by National Natural Science Foundation of China (Nos. 51702184 and 51572140) and China Postdoctoral Science Foundation (No. 2017M610085)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Wang, Q., Liu, J. et al. Synthesis, Characterization and Adsorption Properties of Low-cost Porous Calcined Dolomite Microspheres for Removal of Dyes. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 507–515 (2019). https://doi.org/10.1007/s11595-019-2080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2080-4

Key words

Navigation