Skip to main content
Log in

Preparation, Characterization, and Formation Mechanism of Calcium Sulfate Hemihydrate Whiskers

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Calcium sulfate hemihydrate whiskers were synthesized successfully via one-step hydrothermal crystallization method using phosphogypsum at 130 °C for 240 min with an initial slurry mass fraction of 2.5wt%. The phase compositions, microstructures, thermal properties and molecular structures of asprepared samples were analyzed by XRD, ESEM, EDS, TG-DTA, and FT-IR. The influence of raw materials’ ball-milling time on the morphologies of whiskers was investigated. The effects of impurities on crystallization morphologies and length to diameter ratio (L/D) of calcium sulfate hemihydrate whiskers were studied. The results indicated that the calcium sulfate dihydrate crystalline could be translated directly into fibrous calcium sulfate hemihydrate whiskers. It was beneficial to form fine fiber structure when the ball-milling time of the raw material was 15 min. Aspect ratio of calcium sulfate hemihydrate whiskers decreased with increasing content of impurities. Moreover, the relative growth mechanism of whisker crystals via one-step hydrothermal crystallization method was discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canut MMC, Jacomino VMF, Bratveit K, et al. Microstructural Analyses of Phosphogypsum Generated by Brazilian Fertilizer Industries[J]. Mater. Charact., 2008, 59: 365–373

    Article  Google Scholar 

  2. Al–Hwaiti MS, Ranville JF, Ross PE. Bioavailability and Mobility of Trace Metals in Phosphogypsum from Aqaba and Eshidiy[J]. Jordan. Chem. Erde., 2010, 70: 283–291

    Article  Google Scholar 

  3. Bituha T, Vuci Z, Marovic G, et al. A New Approach to Determine the Phosphogypsum Spread from the Deposition Site into the Environment [J]. J. Hazard. Mater., 2013, 261: 584–592

    Article  Google Scholar 

  4. Contreras M, Pérez–López R, Bolívar JP, et al. Fractionation and Fluxes of Metals and Radionuclides During the Recycling Process of Phosphogypsum Wastes Applied to Mineral CO2 Sequestration[J]. Waste Manage., 2015, 45: 412–419

    Article  Google Scholar 

  5. Sahu SK, Ajmal PY, Bhangare RC, et al. Natural Radioactivity Assessment of a Phosphate Fertilizer Plant Area[J]. J. Radiat. Res. Appl. Sci., 2014, 7: 123–128

    Article  Google Scholar 

  6. Bituha T, Vuci Z, Marovic Tayibi H, et al., Environmental Impact and Management of Phosphogypsum[J]. J. Env. Man., 2009, 90: 2 377–2 386

    Article  Google Scholar 

  7. Yang JK, Liu WC, Zhang LL, et al. Preparation of Load–bearing Building Materials from Autoclaved Phosphogypsum[J]. Constr. Build. Mater., 2009, 23(2): 687–693

    Article  Google Scholar 

  8. Kadirova ZC, Hojamberdiev M, Bo L, et al. Ion Uptake Properties of Low–cost Inorganic Sorption Materials in the CaO–Al2O3–SiO2 System Prepared from Phosphogypsum and Kaolin[J]. J. Clean. Prod., 2014, 83: 483–490

    Article  Google Scholar 

  9. El–Afifi EM, Hilal MA, Attallah MF, et al. Characterization of Phosphogypsum Wastes Associated with Phosphoric Acid and Fertilizers Production[J]. J. Environ. Radioactiv., 2009, 100: 407–412

    Article  Google Scholar 

  10. He H, Dong FQ, He P, et al. Effect of Glycerol on the Preparation of Phosphogypsum–based CaSO4·0.5H2O Whiskers[J]. J. Mater. Sci., 2014, 49: 1 957–1 963

    Article  Google Scholar 

  11. Zhu ZC, Xu L, Chen G, et al. Optimization on Tribological Properties of Aramid Fibre and CaSO4 Whisker Reinfored Non–metallic Friction Material with Analytic Hierarchy Process and Preference Ranking Organization Method for Enrichment Evaluations[J]. Mater. Des., 2010, 31: 551–555

    Article  Google Scholar 

  12. Mwaba MG, Gu JJ, Golriz MR. Effect of Magnetic Field on Calcium Sulfate Crystal Morphology[J]. J. Cryst. Growth, 2007, 303: 381–386

    Article  Google Scholar 

  13. Xu A, Li H, Luo K, et al. Formation of Calcium Sulfate Whiskers from CaCO3–bearing Desulfurization Gypsum[J]. Res. Chem. Intermed., 2011, 37: 449–455

    Article  Google Scholar 

  14. Zhu ZC, Xu L, Chen G, et al. Effect of Different Whiskers on the Physical and Tribological Properties of Non–metallic Friction Materials [J]. Mater. Des., 2011, 32: 54–61

    Article  Google Scholar 

  15. Zhu XF, Wang YB, Wang X, et al. Integration of Preparation and Stabilization for Hemihydrate Calcium Sulfate Whiskers[J]. Adv. Mater. Res., 2011, 239–242: 3 047–3 077

    Google Scholar 

  16. Hamdona SK, Al–Hadad UA. Crystallization of Calcicalcium Sulfate Dihydrate in the Presence of Some Metal Ions[J]. J. Cryst. Growth, 2007, 299: 146–151

    Article  Google Scholar 

  17. Liu J, Reni L, Wei Q, et al. Fabrication and Characterization of Polycaprolactone/Calcium Sulfate Whisker Composites[J]. Express Polym. Lett., 2011, 5: 742–752

    Article  Google Scholar 

  18. Capadona JR, Shanmuganathan K, Trittschuh S, et al. Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose [J]. Biomacromolecules, 2009, 10: 712–716

    Article  Google Scholar 

  19. Zhao W, Wu Y, Xu J, et al. Effect of Ethylene Glycol on Hydrothermal Formation of Calcium Sulfate Hemihydrate Whiskers with High Aspect Ratios[J]. RSC. Adv., 2015, 5: 50 544–50 548

    Article  Google Scholar 

  20. Wang YQ, Li YC, Yuan A, et al. Preparation of Calcium Sulfate Whiskers by Carbide Slag through Hydrothermal Method[J]. Cryst. Res. Technol., 2014, 49: 800–807

    Article  Google Scholar 

  21. Wang X, Jin B, Yang LS, et al. Effct of CuCl2 on Hydrothermal Crystallization of Calcium Sulfate Whiskers Prepared from FGD Gypsum [J]. Cryst. Res. Technol., 2015, 50: 633–640

    Article  Google Scholar 

  22. Luo KB, Xiang CM, Li HP, et al. Influence of Temperature and Solution Composition on the Formation of Calcium Sulfates[J]. Particuology, 2010, 8: 240–244

    Article  Google Scholar 

  23. Anto PL, Anto RJ, Varhhese HT, et al. FT–Raman and SERS Spectra of Anilinium Sulfate[J]. Ramac. Spectrosc., 2009, 40: 1 810–1 815

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyu Chen  (陈德玉).

Additional information

Funded by the National High-tech Research and Development Program of China (2011AA06A106)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, D. & Zhang, K. Preparation, Characterization, and Formation Mechanism of Calcium Sulfate Hemihydrate Whiskers. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 1407–1415 (2018). https://doi.org/10.1007/s11595-018-1983-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1983-9

Key words

Navigation