Skip to main content

Advertisement

Log in

Nanomechanical Property Measurements of SrTiO3 Submicron-fiber

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Strontium titanate (SrTiO3) submicron-fibers with perovskite structure were successfully synthesized by electrospinning method. The nanomechanical properties of synthesized SrTiO3 were investigated by the novel amplitude modulation-frequency modulation (AM-FM) method based on atomic force microscope and nanoindentation technique. The results of AM-FM show that the resonant frequency of SrTiO3 submicron-fiber is lower than that of the Si substrate, which indicates that the Young’s modulus of SrTiO3 submicron-fiber is smaller than that of Si substrate in the range of 105–125 GPa. Nanoindentation further confirmed the results, showing a value of 104 ± 17 GPa. The atomic force microscope-based AM-FM provides us a new way to study the mechanical performance of low dimensional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BAI HW, LIU ZY, SUN DD. Facile Fabrication of TiO2/SrTiO3 Composite Nanofibers by Electrospinning for High Efficient H2 Generation [J]. J. Am. Ceram. Soc., 2013, 96(3): 942–949

    Article  Google Scholar 

  2. YANG GR, YAN W, WANG JN, et al. Fabrication and Photocatalytic Activities of SrTiO3 Nanofibers by Sol–gel Assisted Electrospinning[J]. J. Sol–Gel Sci. Technol., 2014, 71(1): 159–167

    Article  Google Scholar 

  3. Macaraog L, Chuangchote S, Sagawa T. Electrospun SrTiO3 Nanofibers for Photocatalytic Hydrogen Generation[J]. J. Mater. Res., 2013, 29(1): 123–130

    Article  Google Scholar 

  4. BEATTIE AG, SAMARA GA. Pressure Dependence of the Elastic Constants of SrTiO3[J]. J. Appl. Phys., 1971, 42(6): 2 376–2 381

    Article  Google Scholar 

  5. Fischer GJ, WANG Z, Karato SI. Elasticity of CaTiO3, SrTiO3 and Ba–TiO3 Perovskites up to 3.0 GPa: The Effect of Crystallographic Structure [J]. Phys. Chem. Miner., 1993, 20(2): 97–103

    Article  Google Scholar 

  6. Thomas D, Janardhanan C, Sebastian MT. Mechanically Flexible Butyl Rubber–SrTiO3 Composite Dielectrics for Microwave Applications[J]. Int. J. Appl. Ceram. Technol., 2011, 8(5): 1 099–1 107

    Article  Google Scholar 

  7. NISA VS, RAJESH S, MURALI KP, et al. Preparation, Characterization and Dielectric Properties of Temperature Stable SrTiO3/PEEK Composites for Microwave Substrate Applications[J]. Compos. Sci. Technol., 2008, 68(1): 106–112

    Article  Google Scholar 

  8. WANG JS, YIN S, KOMATSU M, et al. Photo–oxidation Properties of Nitrogen Doped SrTiO3 Made by Mechanical Activation[J]. Appl. Catal. B–Environ., 2004, 52(1): 11–21

    Article  Google Scholar 

  9. YUAN XL, ZHENG MJ, ZHANG YF, et al. Self–assembly of Three–dimensional SrTiO3 Microscale Superstructures and Their Photonic Effect[J]. Inorg. Chem., 2013, 52(5): 2 581–2 587

    Article  Google Scholar 

  10. PEIGNEY A, LAURENT C, FLAHAUT E, et al. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes[J]. Carbon, 2001, 39(4): 507–514

    Article  Google Scholar 

  11. SEHAQUI H, ZHOU Q, BERGLUND LA. High–porosity Aerogels of High Specific Surface Area Prepared from Nanofibrillated Cellulose (NFC)[J]. Compos. Sci. Technol., 2011, 71(13): 1 593–1 599

    Article  Google Scholar 

  12. PODGORSKI A, BALAZY A, GRADON L. Application of Nanofibers to Improve the Filtration Efficiency of the Most Penetrating Aerosol Particles in Fibrous Filters[J]. Chem. Eng. Sci., 2006, 61(20): 6 804–6 815

    Article  Google Scholar 

  13. YANG DZ, LI Y N, NIE J. Preparation of Gelatin/PVA Nanofibers and Their Potential Application in Controlled Release of Drugs[J]. Carbohydr. Polym., 2007, 69(3): 538–543

    Article  Google Scholar 

  14. WANG L, YU Y, CHEN PC, et al. Electrospinning Synthesis of C/Fe3O4 Composite Nanofibers and Their Application for High Performance Lithium–ion Batteries[J]. J. Power Sources, 2008, 183(2): 717–723

    Article  Google Scholar 

  15. WANG G, JI Y, HUANG X, et al. Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing[J]. J. Phys. Chem. B, 2006, 110(47): 23 777–23 782

    Article  Google Scholar 

  16. SCHRANZ W, SONDERGELD P, KITYK AV, et al. Elastic Properties of SrTiO3 Crystals at Ultralow Frequencies[J]. Phase Transitions, 1999, 69(1): 61–76

    Article  Google Scholar 

  17. SCOTT JF, LEDBETTER H. Interpretation of Elastic Anomalies in SrTiO3 at 37K[J]. Z. Phys. B: Condens. Matter, 1997, 104(4): 635–639

    Article  Google Scholar 

  18. DEMCZYK BG, WANG YM, CUMINGS J, et al. Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multi–Walled Carbon Nanotubes[J]. Microsc. Microanal., 2002, 334(1/2): 173–178

    Google Scholar 

  19. LEE SH, TEKMEN C, SIGMUND WM. Three–point Bending of Electrospun TiO2 Nanofibers[J]. Mater. Sci. Eng. A, 2005, 398(1/2): 77–81

    Article  Google Scholar 

  20. LI XD, GAO HS, MURPHY CJ, et al. Nanoindentation of Silver Nanowires[J]. Nano Lett., 2003, 3(11): 1 495–1 498

    Article  Google Scholar 

  21. GARCIA R, PROKSCH R, GARCIA R. Nanomechanical Mapping of Soft Matter by Bimodal Force Microscopy[J]. Eur. Polym. J., 2013, 49(8): 1 897–1 906

    Article  Google Scholar 

  22. OLIVER WC, PHARR GM. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments[J]. J. Mater. Res., 1992, 7(6): 1 564–1 583

    Article  Google Scholar 

  23. HOPCROFT MA, MEMBER, IEEE, et al. What is the Young’s Modulus of Silicon?[J]. J. Microelectromech. S., 2010, 19(2): 229–238

    Article  Google Scholar 

  24. YABLON DG, GANNEPALLI A, PROKSCH R, et al. Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy[J]. Macromolecules, 2012, 45(10): 4 363–4 370

    Article  Google Scholar 

  25. BHUSHAN B, LI X. Nanomechanical Characterisation of Solid Surfaces and Thin Films[J]. Int. Mater. Rev., 2003, 48(3): 125–164

    Article  Google Scholar 

  26. LI XD, GAO HS, MURPHY CJ, et al. Nanoindentation of Cu2O Nanocubes [J]. Nano Lett., 2004, 4(10): 1 903–1 907

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Pan  (潘锴) or Shuhong Xie  (谢淑红).

Additional information

Funded by the National Natural Science Foundation of China (Nos.11627801, 11372268, 11502225, and 51375017)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Gao, Y., Yang, Y. et al. Nanomechanical Property Measurements of SrTiO3 Submicron-fiber. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 1350–1354 (2018). https://doi.org/10.1007/s11595-018-1973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1973-y

Key words

Navigation