Skip to main content
Log in

An exact result for \((0, \pm \, 1)\)-vectors

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

After reviewing some memories and results of a dear friend and great collaborator, Michel-Marie Deza, a result (Theorem 8) is proven that could have very well been a joint paper, should not he have departed under tragical circumstances. This new result determines the maximum possible size of a family of \((0, \pm \, 1)\)-vectors without three vectors adding up to the all-zero vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borg, P.: Intersecting systems of signed sets. Electron. J. Combin. 14, research paper R41 (2007)

  2. Cameron, P.J., Ku, C.Y.: Intersecting families of permutations. Eur. J. Combin. 24, 881–890 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deza, M.: Solution d’un problème de Erdős–Lovász. J. Comb. Theory Ser. B 16, 166–167 (1974)

    Article  MATH  Google Scholar 

  4. Deza, M., Frankl, P.: On the maximum number of permutations with given maximal or minimal distance. J. Comb. Theory Ser. A 22, 352–360 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deza, M., Frankl, P.: Every large set of equidistant \((0, +1, -1)\)-vectors forms a sunflower. Combinatorica 1, 225–231 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ellis, D., Friedgut, E., Pilpel, H.: Intersecting families of permutations. J. Am. Math. Soc. 24, 649–682 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erdős, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Q. J. Math. Oxf. 2(12), 313–320 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frankl, P.: The Erdős–Ko–Rado theorem is true for \(n=ckt\). Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 365–375, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam–New York (1978)

  9. Frankl, P., Füredi, Z.: The Erdős–Ko–Rado theorem for integer sequences. SIAM J. Algebraic Discrete Methods 1, 376–381 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kupavskii, A.: Explicit and probabilistic constructions of distance graphs with small clique numbers and large chromatic numbers. Izvest. Math. 78(N1), 59–89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ponomarenko, E.I., Raigorodskii, A.M.: New upper bounds for the independence numbers with vertices at \({(1, 0, 1)}^n\) and their applications to the problems on the chromatic numbers of distance graphs. Mat. Zametki 96(N1), 138–147 (2014); English transl. Math. Notes 96(N1), 140–148 (2014)

  12. Raigorodskii, A.M.: Borsuk’s problem and the chromatic numbers of some metric spaces. Russ. Math. Surv. 56(N1), 103–139 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wilson, R.M.: The exact bound in the Erdős–Ko–Rado theorem. Combinatorica 4, 247–257 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Frankl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frankl, P. An exact result for \((0, \pm \, 1)\)-vectors. Optim Lett 12, 1011–1017 (2018). https://doi.org/10.1007/s11590-018-1245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1245-y

Keywords

Navigation