Skip to main content

Dynamic guiding particle swarm optimization with embedded chaotic search for solving multidimensional problems


The proposed approach incorporated dynamic guiding approach and chaotic search procedure into particle swarm optimization (PSO), named DCPSO. Chaotic search, enjoyed ergodicity, irregularity and pseudo-randomness in PSO, would refine global best position evidently. And, dynamic guiding approach with fluctuating property would easily conduct unpredictable migrations for PSO to break away from evolutionary stagnation. The experiment reports indicated that the proposed DCPSO approach could improve the evolution performance significantly, and present the superiority in solving complex multidimensional problems.

This is a preview of subscription content, access via your institution.


  1. Alatas B., Akin E.: Chaotically encoded particle swarm optimization algorithm and its applications. Chaos Soliton Fract. 41(2), 939–950 (2009)

    Article  MathSciNet  Google Scholar 

  2. Alatas B., Akin E., Bedri O.A.: Chaos embedded particle swarm optimization algorithms. Chaos Soliton Fract. 40, 1715–1734 (2009)

    Article  MATH  Google Scholar 

  3. Angeline, P.J.: Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: Proceedings of the 7th International Conference on Evolutionary Programming VII, pp. 601–610. San Diago, USA (1998)

  4. Campana E.F., Fasano G., Pinto A.: Dynamic analysis for the selection of parameters and initial population, in particle swarm optimization. J. Glob. Optim. 48(3), 347–397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen D.B., Zhao C.X.: Particle swarm optimization with adaptive population size and its application. Appl. Softw. Comput. J. 9(1), 39–48 (2009)

    Article  Google Scholar 

  6. Chen M.R., Li X., Zhang X., Lu Y.Z.: A novel particle swarm optimizer hybridized with extremal optimization. Appl. Softw. Comput. J. 10(2), 367–373 (2010)

    Article  Google Scholar 

  7. Coelho L.S.: A quantum particle swarm optimizer with chaotic mutation operator. Chaos Sol. Fract. 37, 1409–1418 (2008)

    Article  Google Scholar 

  8. Clerc, M.: The swarm and queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1951–1957. Washington, DC, USA (1999)

  9. Clerc M., Kennedy J.F.: The particle swarm-explosion, stability, and conver- gence in a multi- dimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  10. Csendes T., Pál L., Sendín J.O.H., Banga J.R.: The GLOBAL optimization method revisited. Optim. Lett. 2(4), 445–454 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ganguly S., Sahoo N.C., Das D.: A novel multi-objective PSO for electrical distribution system planning incorporating distributed generation. Energy Syst. 1(3), 291–337 (2010)

    Article  Google Scholar 

  12. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948. Perth (1995)

  13. May R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  14. Niknam T.: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Appl. Energy 87(1), 327–339 (2010)

    Article  Google Scholar 

  15. Ohya M.: Complexities and their applications to characterization of chaos. Int. J. Theoret. Phys. 37(1), 495–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pardalos, P.M., Resende, M.G.C. (eds): Handbook of Applied Optimization. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  17. Schutte J.F., Groenwold A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31(1), 93–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kuo-Yu Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, MY., Huang, KY. & Chen, HM. Dynamic guiding particle swarm optimization with embedded chaotic search for solving multidimensional problems. Optim Lett 6, 719–729 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Dynamic guiding approach
  • Chaotic search
  • Particle swarm optimization