Boundedness of some singular integrals operators in weighted generalized Grand Lebesgue spaces


If \(I\subset {\mathbb {R}}\) is a bounded interval, we prove the boundedness of Calderón singular operator and of Hardy-Littlewood Maximal operator in the generalized weighted Grand Lebesgue spaces \(L_p^{p),{\delta }}(I)\), \(1<p<\infty \).


Let \(\Omega \subset {\mathbb {R}}^n \), \(n\ge 2\), be a measurable, bounded domain, and \( f : \Omega \rightarrow {\mathbb {R}}^n , f=(f^1,\ldots ,f^n)\) be a mapping defined on \(\Omega \).

In 1992 Iwaniec and Sbordone introduced the Grand Lebesgue space \(L^{n)}(\Omega )\), [16], they studied the integrability of the Jacobian determinant, by proving that, under the assumption \(|Df| \in L^{n)}(\Omega )\), the Jacobian of f is locally integrable. Such assumption, weaker than \(|Df| \in L^{n}(\Omega )\), is shown to be optimal.

Since than, a very rich literature arose on the generalization of these spaces to the more general context of the grand Orlicz-Sobolev space , hence the Grand Lebesgue spaces played an important role in PDEs theory and in Function Spaces theory (see e.g. [4, 8, 10,11,12, 14, 15, 22, 23] and references therein).

Later, in [9], Fiorenza introduced the Small Lebesgue spaces \(L^{(p}(\Omega )\), characterizing them as the associate space of the Grand Lebesgue spaces \(L^{p)}(\Omega )\), in [1] has been proved that the spaces \(L^{p)'}(\Omega )\) and \(L^{(p'}(\Omega )\) coincide, and a generalization of the Grand and the Small Lebesgue spaces, denoted, respectively, by \(L^{p), \Theta }(\Omega )\) and \(L^{(p, \Theta }(\Omega )\), \(\Theta >0\), was introduced.

In [3], a new generalization of such spaces is given. More precisely

Definition 1.1

Let \(1<p<\infty \). A function \(\delta \), left continuous on \((0,p-1)\), is said to be in the class \({\mathcal {B}}_p\) if

$$\begin{aligned}&(j)&\delta (0+)=0\\&(jj)&0<\delta \le 1\\&(jjj)&\delta (\varepsilon )^\frac{1}{p-\varepsilon }\, \mathrm{is} \, \mathrm{increasing}\, \mathrm{in} \, \varepsilon \end{aligned}$$

Definition 1.2

Let \(\Omega \subset {\mathbb {R}}^n\), \(n\ge 1\), be a measurable set of Lebesgue measure \(|\Omega |<+\infty \), let \(1<p<\infty \) and let \(\delta \in {\mathcal {B}}_p\). The Grand Lebesgue space \(L^{p),\delta }(\Omega )\) with respect to \(\delta \) is the Banach Function Space defined on the set of all measurable functions \(f\in \mathcal{M}_o\), such that

$$\begin{aligned} \Vert f\Vert _{p),\delta }==\rho _{p),\delta }(|f|)= \!\!\!\!\sup _{0<\varepsilon<p-1} \delta (\varepsilon )^\frac{1}{p-\varepsilon }\left( \frac{1}{|\Omega |}\int _{\Omega }|f(y)|^{p-\epsilon }dy\right) ^{\frac{1}{p-\epsilon }}<+ \infty \, . \end{aligned}$$

The goal of this paper is to prove the boundedness of some singular integral operators in the generalized weighted Grand Lebesgue spaces \(L_{w}^{p),\delta }(I)\), \(1<p<\infty \), equipped with the norm

$$\begin{aligned} \Vert f\Vert _{L_w^{p),\delta }} = \!\!\!\!\sup _{0<\varepsilon <p-1} \delta (\varepsilon )^\frac{1}{p-\varepsilon }\left( \frac{1}{|I|}\int _{I}|f(y)|^{p-\epsilon }w(y)dy\right) ^{\frac{1}{p-\epsilon }} \end{aligned}$$

The Calder\(\acute{\mathrm{o}}\)n-Zygmund theory of singular integral operators plays a basic and extremely important role in harmonic analysis. In many applications, a crucial step has been to show that one of the classical operators of harmonic analysis, e.g. maximal operators, singular integrals, fractional integrals, is bounded on the standard Lebesgue spaces. A lot of inequalities involving such kind of classical singular operators of harmonic analysis have been extensively investigated, by obtaining a very intensive literature regarding their boundedness in various function spaces (see e.g. [5,6,7, 18, 19, 21]), with weights basically in the \(A_p\) class of Muckenoupt, see Sect. 2.

In particular, in what follows, we will refer to Calderón singular operator and to Hardy-Littlewood Maximal operator, defined, respectively as

$$\begin{aligned} C_af(x)=\int _I \frac{a(x)-a(t)}{(x-t)^2}f(t)dt, \qquad x \in I \end{aligned}$$


$$\begin{aligned} Mf(x)= \sup _{J\subset I}\frac{1}{|J|}\int _J |f(y)|dy, \qquad x\in I \end{aligned}$$

where I is a bounded interval in \({\mathbb {R}}\), \({\overline{I}}\) is its closure, \(a: {\overline{I}} \rightarrow {\mathbb {R}}\) is a Lip1 function on \({\overline{I}}\) and \(J \subset I\) is a subinterval.

We will prove the following results

Theorem 1.1

Let I be a finite interval, \(1<p<\infty \) and \(\delta \in \mathcal{B}_p\). Then

(i) If \(w \in A_p(I)\) then \(\mathcal{C}_a\) is bounded in \(L_{w}^{p),\delta }(\Omega )\).

(ii) If \(\mathcal{C}_a\) is bounded in \(L_{w}^{p),\delta }(\Omega )\) and there exists a constant k such that

\(0< k \le |a'(x)|\) for all \( x\in I\), then \(w \in A_p(I)\).

Theorem 1.2

Let I be a bounded interval, \(1<p<\infty \) and \(\delta \in \mathcal{B}_p\). Then the Hardy-Littlewood maximal operator is bounded in \(L_{w}^{p),\delta }(\Omega )\) iff \(w \in A_p\).


Let us recall some definitions and results which will be useful in the sequel.

Lemma 2.1

Let \(1<p<\infty \) and \(0<\sigma <p-1\). If \(\delta \in {\mathcal {B}}_p\), there exists a constant \(c=c(p,\delta , \sigma )\) such that

$$\begin{aligned}&\sup _{0<\varepsilon<\sigma } \delta (\varepsilon )^\frac{1}{p-\varepsilon }\left( \frac{1}{|\Omega |} \int _{\Omega } f^{p-\varepsilon }dx\right) ^\frac{1}{p-\varepsilon }\le \rho _{p),\delta }(f)\le c\,\\&\quad \sup _{0<\varepsilon <\sigma } \delta (\varepsilon )^\frac{1}{p-\varepsilon }\left( \frac{1}{|\Omega |} \int _{\Omega } f^{p-\varepsilon }dx\right) ^\frac{1}{p-\varepsilon } \, . \end{aligned}$$

Definition 2.1

Let \(1<p<\infty \), a function w(x) satisfies the Muckenhoupt condition \(A_p\), on an interval I, if w(x) is nonnegative and, for all subinterval J the following condition

$$\begin{aligned} A_p(w,I):= \sup _J\left( \frac{1}{|J|}\int _Jw(x)dx\right) \left( \frac{1}{|J|}\int _Jw(x)^{-\frac{1}{p-1}}dx\right) ^{p-1}<\infty \end{aligned}$$

holds. The function w(x) is said to be a weight of the Muckenhoupt class, \(w(x) \in A_p(I)\).

In 1972, B. Muckenhoupt [20] characterized the weights \(w:{\mathbb {R}}^n \rightarrow [0,\infty )\) such that the Hardy-Littlewood Maximal operator, M, is bounded on \(L^p({\mathbb {R}}^n, wdx)\), \((p>1)\) as those verifying the \(A_p\) condition (2), where the supremum is taken over all cubes in \({\mathbb {R}}^n\) containing x. A generalization to weighted Orlicz spaces was provided by Kerman–Torchinsky [17] and a different proof was given in [2] with a precise dependence of the constants in the resulting inequalities.

Let us conclude the Section by the following results:

Lemma 2.2

[18] Let \(1<p<\infty \) and \(w \in A_p(I)\). Then there exist positive constants \(\sigma \) and L such that \(w \in A_{p-\sigma }(I)\) and

$$\begin{aligned} ||\mathcal{C}_a||_{L_w^{p-\epsilon }\rightarrow L_w^{p-\epsilon }}\le L \end{aligned}$$

for all \(0<\epsilon <\sigma \).

Lemma 2.3

Let \(1<p<\infty \), I a bounded interval and \(\delta \in \mathcal{B}_p\) . Then there exists a positive constant c such that

$$\begin{aligned} ||f\chi _J||_{L_{w}^{p),\delta }(I)}\le c w(J)^{-1/p}||f\chi _J||_{L_{w}^{p}(I)}||\chi _J||_{L_{w}^{p), \delta }(I)} \end{aligned}$$

for all \(f \in L_w^{p}(I)\) and for all subinterval \(J\subset I\).


Let \(f\ge 0\), then, by Hölder inequality

$$\begin{aligned} ||f\chi _J||_{L_{w}^{p),\delta }(I)}= & {} \sup _{0<\epsilon<p-1}\left( \delta (\epsilon )\frac{1}{|J|}\int _{J}|f(y)|^{p-\epsilon }w(y)dy\right) ^{\frac{1}{p-\epsilon }} \\= & {} \sup _{0<\epsilon<p-1}\left( \delta (\epsilon )\frac{1}{|J|}\int _{J}|f(y)|^{p-\epsilon }w(y)^{\frac{p-\epsilon }{p}}w(y)^{\frac{\epsilon }{p}}dy\right) ^{\frac{1}{p-\epsilon }} \\\le & {} \sup _{0<\epsilon<p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\left( \frac{1}{|J|}\int _{J}|f(y)|^{p}w(y)dy\right) ^{\frac{1}{p}}\cdot \\&\quad \left( \frac{1}{|J|}\int _Jw(y)dy\right) ^{\frac{\epsilon }{p(p-\epsilon )}} \\= & {} \sup _{0<\epsilon<p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }} \left( \int _{J}|f(y)|^{p}w(y)dy\right) ^{\frac{1}{p}}\cdot \\&\quad \left( w(J)\right) ^ {-\frac{1}{p}}\left( \frac{1}{|J|}\right) ^{\frac{1}{p-\epsilon }} \left( w(J)\right) ^{\frac{1}{p-\epsilon }} \\= & {} \left( w(J)\right) ^{-\frac{1}{p}}||f\chi _J||_{L_{w}^{p}(I)}\sup _{0<\epsilon <p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\left( \int _J\chi _J(y)w(y)dy\right) ^{\frac{1}{p-\epsilon }} \\= & {} \left( w(J)\right) ^{-\frac{1}{p}}||f\chi _J||_{L_{w}^{p}(I)}||\chi _J||_{L_{w}^{p), \delta }(I)} \end{aligned}$$

\(\square \)

As a consequence of lemma 2.3. we have the following result, for its proof we refer to [18, lemma 2.3], which can be, easily, applied to our generalized spaces.

Lemma 2.4

Let \(1<p<\infty \), I a bounded interval and \(\delta \in \mathcal{B}_p\) . If \(\mathcal{C}_a\) is bounded in \(L_{w}^{p),\delta }(I)\) and there exists a constant m such that \(0<m\le |a'(t)|\). Then

$$\begin{aligned} w^{-\frac{1}{p-1}} < \infty \end{aligned}$$

Proof of Theorem 1.1

Let us assume \(I:=[0,1]\). Since \(w \in A_p\), then there exists \(\epsilon >0\) such that \(w \in A_{p-\epsilon }(I)\). If \(f\in L_{w}^{p),\delta }(I)\), by definition it follows that \(f\in L_{w}^{p-\epsilon }(I)\), which garantees the existence of \(\mathcal{C}_a f(x)\) a.e. in [0, 1].

By lemma 2.2, there exists a constant \(\sigma \in (0,1)\) such that

$$\begin{aligned} ||\mathcal{C}_af||_{L_{w}^{p-\epsilon }(I)}\le c ||f||_{L_{w}^{p-\epsilon }(I)} \end{aligned}$$

for all \(\epsilon \in (0,\sigma ]\) and with c a constant independent on f and on \(\epsilon \).

Let us fix \(\epsilon \in (0,p-1)\), then, by Hölder inequality we get

$$\begin{aligned}&||\mathcal{C}_af||_{L_{w}^{p-\epsilon }(I)}=\left( \int _I |\mathcal{C}_af|^{p-\epsilon }w(x)dx\right) ^{\frac{1}{p-\epsilon }}\le \left( \int _I |\mathcal{C}_af|^{p-\sigma }w(x)dx\right) ^{\frac{1}{p-\sigma }}\cdot \\&\quad \left( w(I)\right) ^{\frac{\epsilon -\sigma }{(p-\sigma )(p-\epsilon )}} \end{aligned}$$

By using this estimate we deduce

$$\begin{aligned} ||\mathcal{C}_af||_{L_{w}^{p),\delta }(I)}= & {} \max \left\{ \sup _{0<\epsilon<\sigma }\delta (\epsilon )^{\frac{1}{p-\epsilon }}||\mathcal{C}_af||_{L_{w}^{p-\epsilon }(I)}\,, \, \sup _{\sigma \le \epsilon<p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}||\mathcal{C}_af||_{L_{w}^{p-\epsilon }(I)} \right\} \\\le & {} \max \biggm \{\sup _{0<\epsilon<\sigma }\delta (\epsilon )^{\frac{1}{p-\epsilon }}||\mathcal{C}_af||_{L_{w}^{p-\epsilon }(I)}\, ,\\&\sup _{\sigma \le \epsilon<p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}||\mathcal{C}_af||_{L_{w}^{p-\sigma }(I)} \cdot (w(I))^{\frac{\epsilon -\sigma }{(p-\sigma )(p-\epsilon )}} \biggm \}\\= & {} \max \biggm \{\sup _{0<\epsilon<\sigma }\delta (\epsilon )^{\frac{1}{p-\epsilon }}||\mathcal{C}_af||_{L_{w}^{p-\epsilon }(I)}\, ,\\&\delta (\sigma )^{\frac{1}{p-\sigma }}||\mathcal{C}_af||_{L_{w}^{p-\sigma }(I)}\sup _{\sigma \le \epsilon<p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\delta (\sigma )^{-\frac{1}{p-\sigma }}\cdot (w(I))^{\frac{\epsilon -\sigma }{(p-\sigma )(p-\epsilon )}} \biggm \}\\ \quad\le & {} \max \biggm \{\sup _{0<\epsilon<\sigma }\delta (\epsilon )^{\frac{1}{p-\epsilon }}||\mathcal{C}_af||_{L_{w}^{p-\epsilon }(I)}\,, \, \left( \sup _{0<\epsilon<\sigma }\delta (\epsilon )^{\frac{1}{p-\epsilon }}||\mathcal{C}_af||_{L_{w}^{p-\epsilon }(I)}\right) \\&\left( \sup _{\sigma \le \epsilon <p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\delta (\sigma )^{-\frac{1}{p-\sigma }}\cdot (w(I))^{\frac{\epsilon -\sigma }{(p-\sigma )(p-\epsilon )}}\right) \biggm \} \end{aligned}$$

Let us set

$$\begin{aligned} S=\sup _{0<\epsilon <\sigma }\delta (\epsilon )^{\frac{1}{p-\epsilon }}||\mathcal{C}_af||_{L_{w}^{p-\epsilon }(I)} \end{aligned}$$


$$\begin{aligned} T=\sup _{\sigma \le \epsilon <p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\delta (\sigma )^{-\frac{1}{p-\sigma }}(w(I))^{\frac{\epsilon - \sigma }{(p-\sigma )(p-\epsilon )}} \end{aligned}$$

previous inequality becomes

$$\begin{aligned} ||\mathcal{C}_af||_{L_{w}^{p)\delta }(I)}=\max \left\{ 1\cdot S, T\cdot S\right\} \le \max \left\{ 1, T\right\} S \end{aligned}$$


$$\begin{aligned} ||\mathcal{C}_af||_{L_{w}^{p),\delta }(I)}\le & {} \max \biggm \{1, \sup _{\sigma \le \epsilon<p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\delta (\sigma )^{-\frac{1}{p-\sigma }}(w(I))^{\frac{\epsilon -\sigma }{(p-\sigma )(p-\epsilon )}}\biggm \}\cdot S \\\le & {} \max \biggm \{1, \sup _{\sigma \le \epsilon <p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\delta (\sigma )^{-\frac{1}{p-\sigma }}(1+w(I))^{\frac{\epsilon -\sigma }{(p-\sigma )(p-\epsilon )}}\biggm \}\cdot S \end{aligned}$$

Let us set

$$\begin{aligned} h(\epsilon )=\delta (\epsilon )^{\frac{1}{p-\epsilon }} \end{aligned}$$


$$\begin{aligned} g(\epsilon )=(1+w(I))^{\frac{\epsilon -\sigma }{(p-\sigma )(p-\epsilon )}}\, , \end{aligned}$$

both of them are increasing functions in \((\sigma , p-1)\).

Hence, by using the boundedness of \(C_a\) in \(L_w^{p-\epsilon }\) we get

$$\begin{aligned} ||\mathcal{C}_af||_{L_{w}^{p),\delta }(I)}\le & {} \max \biggm \{1, \delta (\sigma )^{-\frac{1}{p-\sigma }}\delta (p-1)(1+w(I))^ {\frac{p-\sigma -1}{p-\sigma }}\biggm \}\cdot \\&\quad \sup _{0<\epsilon <\sigma }\delta (\epsilon )^{\frac{1}{p-\epsilon }}||f||_{L_{w}^{p-\epsilon }(I)}\\\le & {} c\left[ \delta (p-1)\delta (\sigma )^{-\frac{1}{p-\sigma }}(1+w(I))^{\frac{p-\sigma -1}{p-\sigma }}\right] ||f||_{L_{w}^{p)\delta }(I)} \end{aligned}$$

Let us prove the necessity.

Since w is integrable on I we have \(||1||_{L_{w}^{p),\delta }(I)}<+\infty \). If \(J:=(a,b) \subset I\) is such that \(b-a \le 1/4\), let us set

$$\begin{aligned} J':= {\left\{ \begin{array}{ll} (b,2b-a) &{} \text{ if } \qquad b<2b-a \\ (2a-b,a)&{}\text{ otherwise } \end{array}\right. } \end{aligned}$$

We want to prove that

$$\begin{aligned} ||\chi _J||_{L_{w}^{p),\delta }(I)}\le c ||\chi _J'||_{L_{w}^{p),\delta }(I)} \end{aligned}$$

Without loss of generality, we can assume \(J'=(b,2b-a)\). Hence \(0 \le t-x \le 2|J|\), for all \(t\in J'\) and \(x\in J\).

Let \(f=\chi _{J'}\) then

$$\begin{aligned} |\mathcal{C}_af(x)| =\left| \int _{J'}\frac{a(x)-a(t)}{(x-t)^2}dt\right| =\left| \frac{a(x)-a(t)}{x-\xi }\right| \int _{J'}\frac{dt}{t-x} \ge |a'(\xi )|\int _{J'}\frac{dt}{t-x} \ge \frac{1}{2}m \end{aligned}$$

for arbitrary \(x \in J\) and some \(\xi \in (b,2b-a)\).


$$\begin{aligned} ||\mathcal{C}_af||_{L_{w}^{p),\delta }(I)} \ge ||\mathcal{C}_af||_{L_{w}^{p),\delta }(J)}\ge m \left| \left| \int _{J'}\frac{dt}{t-x}\right| \right| \ge \frac{1}{2}m ||{\chi _J}||_{L_{w}^{p),\delta }(I)} \end{aligned}$$

Hence, by using the boundedness of \(\mathcal{C}_a\), previous inequality implies

$$\begin{aligned} ||{\chi _{J'}}||_{L_{w}^{p),\delta }(I)}= ||f||_{L_{w}^{p),\delta }(I)}\ge c ||\mathcal{C}_af||_{L_{w}^{p),\delta }(I)}\ge \frac{1}{2}m ||{\chi _J}||_{L_{w}^{p),\delta }(I)} \end{aligned}$$


$$\begin{aligned} ||{\chi _J}||_{L_{w}^{p),\delta }(I)} \le c ||{\chi _{J'}}||_{L_{w}^{p),\delta }(I)} \end{aligned}$$

i.e. (6).

Let us consider the test function \(\displaystyle {f=w^{1-p'}\chi _J}\), if \(x \in J'\) we have

$$\begin{aligned} |\mathcal{C}_af(x)|= \left| \int _{J'}\frac{a(x)-a(t)}{(x-t)^2}w^{1-p^{'}}(t)dt\right| \ge \frac{m}{2|J|}\int _{J}w^{1-p^{'}}(t)dt \end{aligned}$$


$$\begin{aligned} ||\mathcal{C}_af||_{L_{w}^{p),\delta }(I)} \ge c \left( \frac{1}{|J|}\int _Jw^{1-p^{'}}(t)dt\right) \cdot ||{\chi _{J'}}||_{L_{w}^{p),\delta }(0,1)} \end{aligned}$$

so that

$$\begin{aligned} \frac{1}{|J|}w^{1-p^{'}}(J)||{\chi _{J'}}||_{L_{w}^{p),\delta }(0,1)}\le & {} c ||\mathcal{C}_af||_{L_{w}^{p),\delta }(I)}\le c ||f||_{L_{w}^{p),\delta }(I)}= c||f\chi _J||_{L_{w}^{p),\delta }(J)} \\\le & {} c w(J)^{-\frac{1}{p}}||f\chi _J||_{L_{w}^{p}(I)}||\chi _J||_{L_{w}^{p),\delta }(I)} \\\le & {} c w(J)^{-\frac{1}{p}}||f\chi _J||_{L_{w}^{p}(I)}||\chi _{J'}||_{L_{w}^{p),\delta }(I)} \\= & {} c w(J)^{-\frac{1}{p}}\left( \int _Jw^{1-p^{'}}(t)dt\right) ^{\frac{1}{p}}||\chi _{J'}||_{L_{w}^{p),\delta }(I)} \end{aligned}$$


$$\begin{aligned} \frac{1}{|J|}w^{1-p^{'}}(J) \le c w(J)^{-\frac{1}{p}}(w^{1-p^{'}}(J))^{\frac{1}{p}} \end{aligned}$$

that is \(w \in A_p\).

Proof of Theorem 1.2

Let us consider a sub interval \(J\subset I\). By definition of \(\mathcal{M}\) we get

$$\begin{aligned} \frac{1}{|J|}\int _J|f(t)|dt \le M(f\chi _J)(x), \quad x\in J \end{aligned}$$

The boundedness of \(\mathcal{M}\) implies

$$\begin{aligned} \left| \left| \left( \frac{1}{|J|}\int _J|f(y)|dy\right) \chi _J\right| \right| _{L_{w}^{p),\delta }(I)}= & {} \sup _{0<\epsilon<p-1}\left( \delta (\epsilon ) \left( \frac{1}{|I|}\int _I\left( \frac{1}{|J|}\int _J|f(y)|dy\right) \right. \right. \\&\quad \left. \left. \chi _J(x)\right) ^{p-\epsilon }w(x)dx\right) ^{\frac{1}{p-\epsilon }} \\= & {} \sup _{0<\epsilon<p-1}\left( \delta (\epsilon )\left( \frac{1}{|J|}\int _J|f(y)|dy\right) ^{p-\epsilon }\right. \\&\quad \left. \frac{1}{|I|}\int _I\chi _J(x)w(x)dx\right) ^{\frac{1}{p-\epsilon }} \\= & {} \left( \frac{1}{|J|}\int _J|f(y)|dy\right) \sup _{0<\epsilon <p-1}\\&\quad \left( \delta (\epsilon )\frac{1}{|I|}\int _J\chi _J(x)w(x)dx\right) ^{\frac{1}{p-\epsilon }} \\= & {} \left( \frac{1}{|J|}\int _J|f(y)dy \right) ||\chi _J||_{L_{w}^{p),\delta }(I)} \end{aligned}$$

hence, by Hölder’s inequality, with exponents \(\displaystyle {\frac{p}{p-\epsilon }}\) and \(\displaystyle {\frac{p}{\epsilon }}\), we get

$$\begin{aligned}&\left( \frac{1}{|J|}\int _J|f(y)|dy \right) ||\chi _J||_{L_{w}^{p),\delta }(I)} \le ||\mathcal{M}(f \cdot \chi _J)||_{L_{w}^{p),\delta }(I)} \le c||f \cdot \chi _J||_{L_{w}^{p),\delta }(I)} \\&\quad =c \sup _{0<\epsilon<p-1}\left( \delta (\epsilon )\frac{1}{|I|}\int _J|f(y)|^{p-\epsilon }w(y)dy\right) ^{\frac{1}{p-\epsilon }} \\&\quad \le c \sup _{0<\epsilon<p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\left( \frac{1}{|I|}\int _J|f(y)|^p w(y)dy\right) ^{\frac{1}{p}}\cdot \left( \frac{1}{|I|}\int _Jw(y)dy\right) ^{\frac{\epsilon }{p(p-\epsilon )}} \\&\quad =c w(J)^{-\frac{1}{p}}\left( \int _J|f(y)|^pw(y)dy\right) ^{\frac{1}{p}}\sup _{0<\epsilon <p-1}\left( \delta (\epsilon )\frac{1}{|I|}w(J)\right) ^{\frac{1}{p-\epsilon }} \\&\quad = c w(J)^{-\frac{1}{p}}\left( \int _J|f(y)|^pw(y)dy\right) ^{\frac{1}{p}}||\chi _J||_{L_{w}^{p),\delta }(I)} \end{aligned}$$


$$\begin{aligned} \frac{1}{|J|}\int _J|f(y)|dy \le c w(J)^{-\frac{1}{p}}\left( \int _J|f(y)|^pw(y)dy\right) ^{\frac{1}{p}} \end{aligned}$$

which, for \(f=w^{-\frac{1}{p-1}}\chi _J\),   implies \(w\in A_p(I)\).

On the other hand, let \(w \in A_p(I)\), then, it is well known [20] that the Hardy-Littlewood Maximal Operator is bounded on \(L^p({\mathbb {R}}^n, wdx), (p>1)\), where the supremum is taken over all cubes in \({\mathbb {R}}^n\) containing x. Since the class \(A_p(I)\) is open, then there exists a small constant \(\sigma \) such that \(w \in L^{p-\sigma }({\mathbb {R}}^n, wdx)\), then, there exist positive constants \(M_1\, M_2\), such that

$$\begin{aligned} ||\mathcal{M}f||_{L_{w}^{p-\sigma }(I)}\le M_1||f||_{L_{w}^{p-\sigma }(I)}, \qquad ||\mathcal{M}f||_{L_{w}^{p}(I)}\le M_1||f||_{L_{w}^{p}(I)} . \end{aligned}$$

For arbitrary \(0<\epsilon <\sigma \), there exists \(0<t_{\epsilon }<1\), such that

$$\begin{aligned} \frac{1}{p-\epsilon }=\frac{1-t_{\epsilon }}{p-\sigma }+\frac{t_{\epsilon }}{p} \end{aligned}$$

By Riesz-Thorin interpolation theorem, we get

$$\begin{aligned} ||\mathcal{M}f||_{L_{w}^{p-\epsilon }(I)}\le M_1^{1-t_{\epsilon }} M_2^{t_{\epsilon }}||f||_{L_{w}^{p-\epsilon }(I)} \end{aligned}$$

\(\forall f \in L_{w}^{p}(I)\bigcap L_{w}^{p-\epsilon }(I)\), i.e. there exists a positive constant L, such that

$$\begin{aligned} ||\mathcal{M}f||_{L_{w}^{p-\epsilon }(I)}\le L ||f||_{L_{w}^{p-\epsilon }(I)}. \end{aligned}$$

From here on, in order to prove the boundedness of \(\mathcal{M}\), we can proceed by using, exactly the same arguments as for the operator \(\mathcal{C}_a\), or, alternatively, we can use the following

Alternative proof

Let \(w \in A_p(I)\), let us prove the boundedness of the Hardy-Littlewood Maximal operator. Indeed, by setting , we get

Therefore, since \(\displaystyle \max _{\sigma \le \epsilon <p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\,\delta (\sigma )^{-\frac{1}{p-\sigma }}\ge 1\), then


Let us take \(0<\epsilon \le \sigma \), so that \(p-\epsilon >1\), hence we can apply the weighted Hardy inequality with the exponent p replaced by \(p-\epsilon \), to get

By taking the supremum over \(0<\epsilon < \sigma \) on both sides, the previous inequality implies

and therefore, by substituting in (8), we get

$$\begin{aligned} \le \max _{\sigma \le \epsilon<p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\,\delta (\sigma )^{-\frac{1}{p-\sigma }}\frac{p-\sigma }{p-\sigma -1} \sup _{0<\epsilon <p-1}\left( \delta (\epsilon ) \frac{1}{|I|}\int _{I} f^{p-\epsilon }w dx \right) ^{\frac{1}{p-\epsilon }} \end{aligned}$$

By setting \(c(p,\delta )=\displaystyle {\inf _{0<\sigma<p-1}\max _{\sigma \le \epsilon <p-1}\delta (\epsilon )^{\frac{1}{p-\epsilon }}\,\delta (\sigma )^{-\frac{1}{p-\sigma }}\frac{p-\sigma }{p-\sigma -1}}\), and taking the supremum over all cubes \(J\subset I\) containing x we get the boundedness of \(\mathcal{M}\), as we desired.


  1. 1.

    Capone, C., Fiorenza, A.: Maximal inequalities in weighted Orlicz spaces. Rend. Acc. Sc. Fis. Nat. LXII, 73–89 (1995)

    MATH  Google Scholar 

  2. 2.

    Capone, C., Fiorenza, A.: On small Lebesgue spaces. J. Funct. Spaces Appl. 3(1), 73–89 (2005)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Capone, C., Formica, M.R., Giova, R.: Grand Lebesgue spaces with respect to measurable functions. Nonlinear Anal.: Theory, Methods Appl. 85, 125–131 (2013)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Capone, C., Fiorenza, A., Karadzhov, G.E., Nazeer, W.: Grand Orlicz spaces and global integrability of the Jacobian. Z. Anal. Anwendungen 30, 219–236 (2011)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cianchi, A.: Strong and weak type inequalities for some classical operators in Orlicz spaces. J. Lond. Math. Soc. 60(2), 187–202 (1999)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: The maximal function on variable \(L^p\) spaces. Ann. Acad.: Sci. Fenn. Math. 28(1), 223–238 (2003)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Perez, C.: The boundedness of classical operators on variable \(L^p\) spaces, Ann. Acad.: Sci. Fenn. Math 31(1), 239–264 (2006)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Di Fratta, G., Fiorenza, A.: A direct approach to the duality of grand and small Lebesgue spaces. Nonlinear Anal. TMA 70, 2582–2592 (2009)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Fiorenza, A.: Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51(2), 131–148 (2000)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Fiorenza, A., Gupta, B., Jain, P.: The maximal theorem for weighted grand Lebesgue spaces. Studia Mthematica 188(2), 123–133 (2008)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Fiorenza, A., Mercaldo, A., Rakotoson, J.M.: Regularity and comparison results in grand Sobolev spaces for parabolic equations with measure data. Appl. Math. Lett. 14, 979–981 (2001)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Fiorenza, A., Mercaldo, A., Rakotoson, J.M.: Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discret. Contin. Dyn. Syst. 14(4), 893–906 (2002)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Fiorenza, A., Rakotoson, J.M.: Compactness, interpolation inequalities for small Lebesgue–Sobolev spaces and applications. Calc. Var. P.D.E. 25(2), 187–203 (2005)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Fiorenza, A., Sbordone, C.: Existence and uniqueness results for solutions of nonlinear equations with right hand side in \(L^1\). Studia Math. 127(3), 223–231 (1998)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Greco, L., Iwaniec, T., Sbordone, C.: Inverting the p-harmonic operator. Manuscripta Math. 92, 249–258 (1997)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypothesis. Arch. Rat. Mech. Anal. 119, 129–143 (1992)

    Article  Google Scholar 

  17. 17.

    Kerman, R.A., Torchinsky, A.: Integral inequalities with weights for the Hardy maximal function. Studia Math. 71, 277–284 (1982)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Kokilashvili, V.: Boundedness criteria for singular integrals in weighted grand Lebesgue spaces. J. Math. Sci. 170(1), 20–33 (2010)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kokilashvili, V., Samko, N.: S: Samko singular operators in variable \(L^{p(\cdot )}(\Omega, \rho )\) with oscillating weights. Mathematische Nachrichten 280(910), 1145–1156 (2007)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. J. Trans. Am. Math. Soc. 165, 207–226 (1972)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Rakotondratsimba, Y.: On the boundedness of classical operators on weighted Lorentz spaces. Georgian Math. J. 5(2), 77–200 (1998)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Sbordone, C.: Nonlinear elliptic equations with right hand side in nonstandard spaces. Atti Sem. Mat. Fis. Univ. Modena 46, 361–368 (1988)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Sbordone, C.: Grand Sobolev spaces and their applications to variational problems. Le Matematiche 51(2), 335–347 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Claudia Capone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper has been partially supported by INdAM/GNAMPA.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Capone, C. Boundedness of some singular integrals operators in weighted generalized Grand Lebesgue spaces. Ricerche mat (2021).

Download citation


  • Calderón singular operator and of Hardy-Littlewood maximal operator
  • Grand Lebesgue spaces

Mathematics Subject Classification

  • 46E30
  • 45P05
  • 42B25