A safe harbor can protect an endangered species from its predators

Abstract

The objective is the study of the dynamics of a prey–predator model where the prey species can migrate between two patches. The specialist predator is confined to the first patch, where it consumes the prey following the simple law of mass action. The prey is further “endangered” in that it suffers from the strong Allee effect, assumed to occur due to the lowering of successful matings. In the second patch the prey grows logistically. The model is formulated in a comprehensive way so as to include specialist as well as generalist predators, as a continuum of possible behaviors. This model described by a set of three ordinary differential equation is an extension of some previous models proposed and analysed in the literature on metapopulation models. The following analysis issues will be addressed: boundedness of the solution, equilibrium feasibility and stability, and dynamic behaviour dependency of the population and environmental parameters. Three types for both equilibria and limit cycles are possible: trivial, predator-free and coexistence. Classical analysis techniques are used and also theoretical and numerical bifurcation analysis. Besides the well-known local bifurcations, also a homoclinic connection as a global bifurcation is calculated. In view of the difficulty in the analysis, only the specialist case will be analysed. The obtained results indicate that the safe harbor can protect the endangered species under certain parametric restrictions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Allee, W.C.: Animal Aggregations: A Study in General Sociology. University of Chicago Press, Chicago (1931)

    Book  Google Scholar 

  2. 2.

    Arditi, R., Lobry, C., Sari, T.: Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation. Theor. Popul. Biol. 106, 45–59 (2015)

    Article  Google Scholar 

  3. 3.

    Barengo, M., Iennaco, I., Venturino, E.: A simple meta-epidemic model. Int. J. Comput. Math. 91(6), 1202–1223 (2014). https://doi.org/10.1080/00207160.2013.829212

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore (1998)

    Book  Google Scholar 

  5. 5.

    Belocchio, D., Cavoretto, R., Gimmelli, G., Marchino, A., Venturino, E.: The principle of competitive exclusion in metapopulation models. AMIS 9(4), 1739–1752 (2015)

    Google Scholar 

  6. 6.

    Berec, L., Angulo, E., Courchamp, F.: Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191 (2006)

    Article  Google Scholar 

  7. 7.

    Bianco, F., Cagliero, E., Gastelurrutia, M., Venturino, E.: Metaecoepidemic models: infected and migrating predators. Int. J. Comput. Math. 89(13–14), 1764–1780 (2012)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Clark, C.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, Hoboken (1976)

    MATH  Google Scholar 

  9. 9.

    Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  10. 10.

    De Angelis, D.L., Travis, C.C., Post, M.M.: Persistence and stability of seed-dispersed species in a patchy environment. Theor. Popul. Biol. 16, 107–125 (1979)

    Article  Google Scholar 

  11. 11.

    De Angelis, D.L., Zhang, B.: Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach. Discrete Contin. Dyn. Syst. Ser. B 19, 3087–3104 (2014)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Dennis, B.: Allee effects: population growth, critical density, and the chance of extinction. Nat. Res. Model. 3, 481–538 (1989)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Dhooge, A., Govaerts, W., Kuznetsov, YuA: New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. Syst. 14, 147–175 (2008)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Doedel, E.J., Oldeman, B.: AUTO 07p: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University, Montreal (2009)

    Google Scholar 

  15. 15.

    Freedman, H.I., Waltman, D.: Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator. SIAM J. Appl. Math. 32, 631–648 (1977)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Gazzola, C., Venturino, E.: Dynamics of different topological configurations in a three-patch metapopulation model. Bull. Math. Sci. Appl. 15, 48–61 (2016)

    Google Scholar 

  17. 17.

    González-Olivares, E., Rojas-Palma, A.: Multiple limit cycles in a Gause type predator–prey model with Holling type III functional response and Allee effect on prey. Bull. Math. Biol. 73, 1378–1397 (2011)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Hanski, I.: Metapopulation Ecology. Oxford University Press, Oxford (1999)

    Google Scholar 

  19. 19.

    Hastings, A.: Transient dynamics and persistence of ecological systems. Ecol. Lett. 4, 215–220 (2001)

    Article  Google Scholar 

  20. 20.

    Jansen, V.A.A.: Regulation of predator–prey systems through spatial interactions—a possible solution to the paradox of enrichment. Oikos 74, 384–390 (1995)

    Article  Google Scholar 

  21. 21.

    Jansen, V.A.A.: The dynamics of two diffusively coupled predator–prey systems. Theor. Popul. Biol. 59, 119–131 (2001)

    Article  Google Scholar 

  22. 22.

    Jansen, V.A.A., de Roos, A.M.: The role of space in reducing predator–prey cycles. In: Dieckmann, U., Law, R., Metz, J.A.J. (eds.) The Geometry of Ecological Interactions: Simplifying Spatial Complexity, pp. 183–201. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  23. 23.

    Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  24. 24.

    Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences 112. Springer, New York (2004)

  25. 25.

    Motto, S., Venturino, E.: Migration paths saturations in meta-epidemic systems. In: Murgante, B., Misra, S., Carlini, M., Torre, C., Nguyen, H.Q., Taniar, D., Apduhan, B., Gervasi, O. (eds.) ICCSA 2014, Part I, LNCS 8579, pp. 176–188. Springer, Cham (2014)

    Google Scholar 

  26. 26.

    Murray, J.: Mathematical Biology. I. An Introduction. Springer, New York (1993)

    Google Scholar 

  27. 27.

    Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (2001)

    Book  Google Scholar 

  28. 28.

    Quaglia, G., Re, E., Rinaldi, M., Venturino, E.: A two-patch predator–prey metapopulation model. East Asian J. Appl. Math. 2(3), 238–265 (2012)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Sen, M., Banerjee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect. Ecol. Complex. 11, 12–27 (2012)

    Article  Google Scholar 

  30. 30.

    Stephens, P., Sutherland, W., Freckleton, R.: What is the Allee effect? Oikos 87, 185–190 (1999)

    Article  Google Scholar 

  31. 31.

    Venturino, E.: Simple metaecoepidemic models. Bull. Math. Biol. 73(5), 917–950 (2011)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Venturino, E.: Metaecoepidemic models with sound and infected prey migrations. Math. Comput. Simul. 126, 14–44 (2016). https://doi.org/10.1016/j.matcom.2016.02.006

    MathSciNet  Article  Google Scholar 

  33. 33.

    van Voorn, G.A.K., Hemerik, L., Boer, M.P., Kooi, B.W.: Heteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effect. Math. Biosci. 209, 451–469 (2007)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

EV has been partially supported by the project “Metodi numerici e computazionali per le scienze applicate” of the Dipartimento di Matematica “Giuseppe Peano”. Part of this work was carried out during a stay of BK and EV at the Banff International Research Station, whose the support is kindly acknowledged, in the framework of the program “New Mathematical Methods for Complex Systems in Ecology”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Malay Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ezio Venturino: Member of the INdAM Research Group GNCS.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, M., Kooi, B.W. & Venturino, E. A safe harbor can protect an endangered species from its predators. Ricerche mat 69, 413–436 (2020). https://doi.org/10.1007/s11587-020-00490-z

Download citation

Keywords

  • Metapopulations
  • Specialist predator
  • Allee effect
  • Local bifurcation
  • Global bifurcation

Mathematics Subject Classification

  • 34C23
  • 35B32
  • 92D25