Stability of the equilibria of a dynamic system modeling stem cell transplantation


This paper provides a complete analysis of the stability of the steady-states for a three-dimensional system modeling cell dynamics after bone marrow transplantation in chronic myeloid leukemia. There are given results for both chronic and accelerated-acute phases of the disease.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Cucuianu, A., Precup, R.: A hypothetical–mathematical model of acute myeloid leukemia pathogenesis. Comput. Math. Methods Med. 11, 49–65 (2010)

    MathSciNet  Article  Google Scholar 

  2. 2.

    De Conde, R., Kim, P.S., Levy, D., Lee, P.P.: Post-transplantation dynamics of the immune response to chronic myelogenous leukemia. J. Theor. Biol. 236, 39–59 (2005)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Dingli, D., Michor, F.: Successful therapy must eradicate cancer stem cells. Stem Cells 24, 2603–2610 (2006)

    Article  Google Scholar 

  4. 4.

    England, J.P., Krauskopf, B., Osinga, H.M.: Computing two-dimensional global invariant manifolds in slow-fast systems. Int. J. Bifurc. Chaos 17(3), 805–822 (2007)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Francomano, E., Hilker, F.M., Paliaga, M., Venturino, E.: An efficient method to reconstruct invariant manifolds of saddle points. Dolomites Res. Notes Approx. 10, 25–30 (2017)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Gradshteym, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)

    Google Scholar 

  7. 7.

    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Google Scholar 

  8. 8.

    Heck, A.: Introduction to Maple, 3rd edn. Springer, New York (2003)

    Google Scholar 

  9. 9.

    Ilyin, V.A., Poznyak, E.G.: Analytic Geometry. Mir Publishers, Moscow (1984)

    Google Scholar 

  10. 10.

    Kim, P.S., Lee, P.P., Levy, D.: Mini-Transplants for Chronic Myelogenous Leukemia: A Modeling Perspective, Biology and Control Theory: Current Challenges. Lecture Notes in Control and Information Sciences, vol. 357. Springer, Berlin (2007)

    Google Scholar 

  11. 11.

    Krauskopf, B., Osinga, H.: Two-dimensional global manifolds of vector fields. Chaos 9(3), 768–774 (1999)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Marciniak-Czochra, A., Stiehl, T.: Mathematical models of hematopoietic reconstitution after stem cell transplantation. In: Bock, H., Carraro, T., Jaeger, W., Koerkel, S. (eds.) Model Based Parameter Estimation: Theory and Applications, pp. 191–206. Springer, Heidelberg (2011)

    Google Scholar 

  13. 13.

    Mehta, J., Powles, R., Treleaven, J., Kulkarni, S., Horton, C., Singhal, S.: Number of nucleated cells infused during allogeneic and autologous bone marrow transplantation: an important modifiable factor influencing outcome. Blood 90(9), 3808–10 (1997)

    Article  Google Scholar 

  14. 14.

    Neiman, B.: A mathematical model of chronic myelogenous leukemia, Oxford University (2000).

  15. 15.

    Parajdi, L.G., Precup, R.: Analysis of a planar differential system arising from hematology. Stud. Univ. Babeş-Bolyai Math. 63, 235–244 (2018)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Parajdi, L.G., Precup, R., Bonci, E.-A., Tomuleasa, C.: A mathematical model of the transition from the normal hematopoiesis to the chronic and acceleration-acute stages in myeloid leukemia, submitted

  17. 17.

    Precup, R.: Mathematical understanding of the autologous stem cell transplantation. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 10, 155–167 (2012)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Precup, R., Arghirescu, S., Cucuianu, A., Serban, M.: Mathematical modeling of cell dynamics after allogeneic bone marrow transplantation. Int. J. Biomath. 5(2), 1–18 Article 1250026 (2012)

  19. 19.

    Precup, R., Şerban, M.A., Trif, D., Cucuianu, A.: A planning algorithm for correction therapies after allogeneic stem cell transplantation. J. Math. Modell. Algorithm 11, 309–323 (2012)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Precup, R., Şerban, M.A., Trif, D.: Asymptotic stability for a model of cellular dynamics after allogeneic bone marrow transplantation. Nonlinear Dynamics Syst. Theory 13, 79–92 (2013)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Séroul, R.: Programming for Mathematicians. Springer, Berlin (2000)

    Google Scholar 

  22. 22.

    Slavin, S., Nagler, A., Naparstek, E., et al.: Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91(3), 756–63 (1998). [PMID: 9446633]

    Article  Google Scholar 

  23. 23.

    Stiehl, T., Ho, A., Marciniak-Czochra, A.: The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling. Bone Marrow Transpl. 49, 30–37 (2014)

    Article  Google Scholar 

  24. 24.

    Trif, D.: LaguerreEig (2011)

  25. 25.

    Vincent, P.C., Rutzen-Loesevitz, L., Tibken, B., Heinze, B., Hofer, E.P., Fliedner, T.M.: Relapse in chronic myeloid leukemia after bone marrow transplantation: biomathematical modeling as a new approach to understanding pathogenesis. Stem Cells 17, 9–17 (1999)

    Article  Google Scholar 

Download references


The author would like to thank Professor Damian Trif and Professor Radu Precup for their assistance in preparing this work.

Author information



Corresponding author

Correspondence to Lorand Gabriel Parajdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parajdi, L.G. Stability of the equilibria of a dynamic system modeling stem cell transplantation. Ricerche mat 69, 579–601 (2020).

Download citation


  • Stability
  • Dynamical system
  • Numerical simulations
  • Mathematical modeling

Mathematics Subject Classification

  • 37C75
  • 37N25
  • 34D23