Prüfer property in amalgamated algebras along an ideal


Let \(f : A \rightarrow B\) be a ring homomorphism and J be an ideal of B. In this paper, we give a characterization of zero divisors of the amalgamation which is a generalization of Maimani’s and Yassemi’s work (see Maimani and Yassemi in J Pure Appl Algebra 212(1):168–174, 2008). Furthermore, we investigate the transfer of Prüfer domain concept to commutative rings with zero divisors in the amalgamation of A with B along J with respect to f (denoted by \(A\bowtie ^fJ),\) introduced and studied by D’Anna et al. (Commutative algebra and its applications, Walter de Gruyter, Berlin, 2009, J Pure Appl Algebra 214:1633–1641, 2010). Our results recover well known results on duplications. The main applications constist in the construction of new original classes of Prüfer rings that are not Gaussian and Prüfer rings with weak global dimension strictly greater than 1.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abuihlail, J., Jarrar, M., Kabbaj, S.: Commutative rings in which every finitely generated ideal is quasiprojective. J. Pure Appl. Algebra 215, 2504–2511 (2011)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bakkari, C., Kabbaj, S., Mahdou, N.: Trivial extensions defined by \(Pr\ddot{u}fer\) conditions. J. Pure Appl. Algebra 214, 53–60 (2010)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bazzoni, S., Glaz, S.: Prüfer rings, Multiplicative Ideal Theory in Commutative Algebra, Springer, New York, 55–72 (2006)

  4. 4.

    Bazzoni, S., Glaz, S.: Gaussian properties of total rings of quotients. J. Algebra 310, 180–193 (2007)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Boisen, M., Sheldon, P.B.: CPI-extension: over rings of integral domains with special prime spectrum. Can. J. Math. 29, 722–737 (1977)

    Article  Google Scholar 

  6. 6.

    Butts, H.S., Smith, W.: Prüfer rings. Math. Z. 95, 196–211 (1967)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chhiti, M., Jarrar, M., Kabbaj, S., Mahdou, N.: \(Pr\ddot{u}fer\) conditions in an amalgamated duplication of a ring along an ideal. Commun. Algebra 43(1), 249–261 (2015)

    Article  Google Scholar 

  8. 8.

    D’Anna, M., Finocchiaro, C.A., Fontana, M.: Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, pp. 241–252 (2009)

  9. 9.

    D’Anna, M., Finocchiaro, C.A., Fontana, M.: Properties of chains of prime ideals in amalgamated algebras along an ideal. J. Pure Appl. Algebra 214, 1633–1641 (2010)

    MathSciNet  Article  Google Scholar 

  10. 10.

    D’Anna, M., Finocchiaro, C.A., Fontana, M.: Algebraic and topological properties of an amalgamated algebra along an ideal. Commun. Algebra 44, 1836–1851 (2016)

    Article  Google Scholar 

  11. 11.

    D’Anna, M., Fontana, M.: The amalgamated duplication of a ring along a multiplicative-canonical ideal. Ark. Mat. 45, 241–252 (2007)

    MathSciNet  Article  Google Scholar 

  12. 12.

    D’Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal : the basic properties. J. Algebra Appl. 6, 443–459 (2007)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Finocchiaro, C.: Prüfer-like conditions on an amalgamated algebra along an ideal. Houston J. Math. 40(1), 63–79 (2014)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Fuchs, L.: Uber die Ideale arithmetischer Ringe. Comment. Math. Helv. 23, 334–341 (1949)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Glaz, S.: The weak global dimension of Gaussian rings. Proc. Am. Math. Soc. 133(9), 2507–2513 (2005)

    Article  Google Scholar 

  16. 16.

    Glaz, S.: Prüfer conditions in rings with zero-divisors, CRC Press Series of Lectures in Pure Appl. Math. 241, 272–282 (2005)

  17. 17.

    Griffin, M.: Prüfer rings with zero-divisors. J. Reine Angew Math. 239(240), 55–67 (1969)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Jensen, C.U.: Arithmetical rings. Acta Math. Hungr. 17, 115–123 (1966)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kabbaj, S., Mahdou, N., Moutui, M.A.S.: Bi-amalgamations subject to the arithmetical property. J. Algebra Appl. 16, 1750030 (11 pages) (2017)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Krull, W.: Breitrage zur arithmetik kommutativer integritatsebereiche. Maths. Z 41, 545–577 (1936)

    Article  Google Scholar 

  21. 21.

    Lucas, T.G.: Gaussian polynomials and invertibility. Proc. Am. Math. Soc. 133(7), 1881–1886 (2005)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Mahdou, N., Moutui, M.A.S.: Amalgamated algebras along an ideal defined by Gaussian condition. J. Taibah Univ. Sci. 9(3), 373–379

  23. 23.

    Mahdou, N., Moutui, M. A. S.: fqp-property in amalgamated algebras along an ideal. Asian-Eur. J. Math. 8(3), 1550050 (10 pages) (2015)

  24. 24.

    Mahdou, N., Moutui, M.A.S.: On (A)-rings and strong (A)-rings issued from amalgamations. Stud. Sci. Math. Hung. 55(2), 270–279 (2018)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Maimani, H., Yassemi, S.: Zero-divisor graphs of amalgamated duplication of a ring along an ideal. J. Pure Appl. Algebra 212(1), 168–174 (2008)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Nagata, M.: Local Rings. Interscience, New York (1962)

    Google Scholar 

  27. 27.

    Prüfer, H.: Untersuchungen uber teilbarkeitseigenschaften in korpern. J. Reine Angew. Math. 168, 1–36 (1932)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Tsang, H.: Gauss’s Lemma. University of Chicago, Chicago (1965). Ph.D. thesis

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Moutu Abdou Salam Moutui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahdou, N., Moutui, M.A.S. Prüfer property in amalgamated algebras along an ideal. Ricerche mat 69, 111–120 (2020).

Download citation


  • Amalgamated algebra along an ideal
  • Prüfer rings
  • Gaussian rings
  • Amalgamated duplication
  • Trivial rings extension

Mathematics Subject Classification

  • 13F05
  • 13A15
  • 13E05
  • 13F20
  • 13F30
  • 13D05
  • 16D40