The continuous classical Heisenberg ferromagnet equation with in-plane asymptotic conditions. I. Direct and inverse scattering theory

  • F. Demontis
  • G. Ortenzi
  • M. Sommacal
  • C. van der Mee
Article
  • 10 Downloads

Abstract

We develop the direct and inverse scattering theory of the linear eigenvalue problem associated with the classical Heisenberg continuous equation with in-plane asymptotic conditions. In particular, analyticity of the scattering eigenfunctions and scattering data, and their asymptotic behaviours are derived. The inverse problem is formulated in terms of Marchenko equations, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided.

Keywords

Classical Heisenberg ferromagnet equation Soliton solutions Inverse scattering transform Magnetic droplet Ferromagnetic materials 

Mathematics Subject Classification

35C08 35G25 35P25 35Q40 35Q51 

Notes

Acknowledgements

The results contained in the present paper have been partially presented in Wascom 2017. The research leading to this article was supported in part by INdAM-GNFM and the London Mathematical Society Scheme 4 (Research in Pairs) grant on “Propagating, localised waves in ferromagnetic nanowires” (Ref No: 41622). We also wish to thank an anonymous referee for his/her valuable comments.

References

  1. 1.
    Lakshmanan, M.: Continuum spin system as an exactly solvable dynamical system. Phys. Lett. 61A, 53–54 (1977)CrossRefGoogle Scholar
  2. 2.
    Takhtajan, L.A.: Integration of the continuous Heisenberg spin chain through the inverse scattering method. Phys. Lett. 64A, 235–237 (1977)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zakharov, V.E., Takhtajan, L.A.: Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet. Theor. Math. Phys. 38, 17–23 (1979)CrossRefGoogle Scholar
  4. 4.
    Fogedby, H.C.: Solitons and magnons in the classical Heisenberg chain. J. Phys. A Math. Gen. 13, 1467–1499 (1980)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aharoni, A.: Introduction to the Theory of Ferromagnetism, International Series of Monographs in Physics. Oxford University Press, New York (2000)Google Scholar
  6. 6.
    Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 139, 483–488 (1988)CrossRefGoogle Scholar
  7. 7.
    Hoefer, M.A., Sommacal, M.: Propagating two-dimensional magnetic droplets. Physica D 241, 890–901 (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Landau, L., Lifschitz, E.: Theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowj. 8, 153 (1935)MATHGoogle Scholar
  9. 9.
    Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)CrossRefMATHGoogle Scholar
  10. 10.
    Calogero, F., Degasperis, A.: Spectral Transforms and Solitons. North-Holland, Amsterdam (1982)MATHGoogle Scholar
  11. 11.
    Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin, New York (1987)CrossRefMATHGoogle Scholar
  12. 12.
    Demontis, F., Lombardo, S., Sommacal, M., van der Mee, C., Vargiu, F.: Effective Generation of Closed-form Soliton Solutions of the Continuous Classical Heisenberg Ferromagnet Equation (submitted)Google Scholar
  13. 13.
    Demontis, F., Vargiu, F., van der Mee, C.: Nonsmooth spin densities for continuous Heisenberg spin chains. Ricerche di Matematica, pp. 1–10 (2016)Google Scholar
  14. 14.
    Aktosun, T., Demontis, F., van der Mee, C.: Exact solutions to the focusing nonlinear Schrödinger equation. Inverse Probl. 23, 2171–2195 (2007)CrossRefMATHGoogle Scholar
  15. 15.
    Demontis, F.: Exact solutions to the modified Korteweg–de Vries equation. Theor. Math. Phys. 168, 886–897 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Aktosun, T., Demontis, F., van der Mee, C.: Exact solutions to the Sine-Gordon equation. J. Math. Phys. 51, 123521 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Demontis, F., van der Mee, C.: Closed form solutions to the integrable discrete nonlinear Schrödinger equation. J. Nonlinear Math. Phys. 19, 1250010 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Demontis, F., Ortenzi, G., van der Mee, C.: Exact solutions of the Hirota equation and vortex filaments motion. Physica D 313, 61–80 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Demontis, F., Ortenzi, G., Sommacal, M., van der Mee, C.: The continuous classical Heisenberg ferromagnet equation with in-plane asymptotic conditions. II. IST and closed-form soliton solutions. In: Ricerche di Matematica. https://doi.org/10.1007/s11587-018-0395-7
  20. 20.
    Demontis, F., Prinari, B., van der Mee, C., Vitale, F.: The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions. J. Math. Phys. 55, 101505 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Angelis, M.D., Renno, P.: Existence, uniqueness and a priori estimates for a nonlinear integro-differential equation. Phys. Lett. A 57, 95–109 (2008)MathSciNetMATHGoogle Scholar
  22. 22.
    van der Mee, C., Nonlinear evolution models of integrable type, vol. 11, e-Lectures Notes, SIMAI (2013)Google Scholar
  23. 23.
    Demontis, F.: “Matrix Zakharov-Shabat system and inverse scattering transform” (2012), also: Direct and inverse scattering of the matrix Zakharov-Shabat system, Ph.D. thesis, University of Cagliari, Italy (2007)Google Scholar
  24. 24.
    Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2018

Authors and Affiliations

  • F. Demontis
    • 1
  • G. Ortenzi
    • 2
  • M. Sommacal
    • 3
  • C. van der Mee
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi di CagliariCagliariItaly
  2. 2.Dipartimento di Matematica e ApplicazioniUniversità degli Studi di Milano BicoccaMilanItaly
  3. 3.Department of Mathematics, Physics and Electrical EngineeringUniversity of Northumbria at NewcastleNewcastle upon TyneUK

Personalised recommendations