The continuous classical Heisenberg ferromagnet equation with in-plane asymptotic conditions. I. Direct and inverse scattering theory
- 10 Downloads
Abstract
We develop the direct and inverse scattering theory of the linear eigenvalue problem associated with the classical Heisenberg continuous equation with in-plane asymptotic conditions. In particular, analyticity of the scattering eigenfunctions and scattering data, and their asymptotic behaviours are derived. The inverse problem is formulated in terms of Marchenko equations, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided.
Keywords
Classical Heisenberg ferromagnet equation Soliton solutions Inverse scattering transform Magnetic droplet Ferromagnetic materialsMathematics Subject Classification
35C08 35G25 35P25 35Q40 35Q51Notes
Acknowledgements
The results contained in the present paper have been partially presented in Wascom 2017. The research leading to this article was supported in part by INdAM-GNFM and the London Mathematical Society Scheme 4 (Research in Pairs) grant on “Propagating, localised waves in ferromagnetic nanowires” (Ref No: 41622). We also wish to thank an anonymous referee for his/her valuable comments.
References
- 1.Lakshmanan, M.: Continuum spin system as an exactly solvable dynamical system. Phys. Lett. 61A, 53–54 (1977)CrossRefGoogle Scholar
- 2.Takhtajan, L.A.: Integration of the continuous Heisenberg spin chain through the inverse scattering method. Phys. Lett. 64A, 235–237 (1977)MathSciNetCrossRefGoogle Scholar
- 3.Zakharov, V.E., Takhtajan, L.A.: Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet. Theor. Math. Phys. 38, 17–23 (1979)CrossRefGoogle Scholar
- 4.Fogedby, H.C.: Solitons and magnons in the classical Heisenberg chain. J. Phys. A Math. Gen. 13, 1467–1499 (1980)MathSciNetCrossRefGoogle Scholar
- 5.Aharoni, A.: Introduction to the Theory of Ferromagnetism, International Series of Monographs in Physics. Oxford University Press, New York (2000)Google Scholar
- 6.Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 139, 483–488 (1988)CrossRefGoogle Scholar
- 7.Hoefer, M.A., Sommacal, M.: Propagating two-dimensional magnetic droplets. Physica D 241, 890–901 (2012)CrossRefMATHGoogle Scholar
- 8.Landau, L., Lifschitz, E.: Theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowj. 8, 153 (1935)MATHGoogle Scholar
- 9.Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)CrossRefMATHGoogle Scholar
- 10.Calogero, F., Degasperis, A.: Spectral Transforms and Solitons. North-Holland, Amsterdam (1982)MATHGoogle Scholar
- 11.Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin, New York (1987)CrossRefMATHGoogle Scholar
- 12.Demontis, F., Lombardo, S., Sommacal, M., van der Mee, C., Vargiu, F.: Effective Generation of Closed-form Soliton Solutions of the Continuous Classical Heisenberg Ferromagnet Equation (submitted)Google Scholar
- 13.Demontis, F., Vargiu, F., van der Mee, C.: Nonsmooth spin densities for continuous Heisenberg spin chains. Ricerche di Matematica, pp. 1–10 (2016)Google Scholar
- 14.Aktosun, T., Demontis, F., van der Mee, C.: Exact solutions to the focusing nonlinear Schrödinger equation. Inverse Probl. 23, 2171–2195 (2007)CrossRefMATHGoogle Scholar
- 15.Demontis, F.: Exact solutions to the modified Korteweg–de Vries equation. Theor. Math. Phys. 168, 886–897 (2011)MathSciNetCrossRefGoogle Scholar
- 16.Aktosun, T., Demontis, F., van der Mee, C.: Exact solutions to the Sine-Gordon equation. J. Math. Phys. 51, 123521 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 17.Demontis, F., van der Mee, C.: Closed form solutions to the integrable discrete nonlinear Schrödinger equation. J. Nonlinear Math. Phys. 19, 1250010 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 18.Demontis, F., Ortenzi, G., van der Mee, C.: Exact solutions of the Hirota equation and vortex filaments motion. Physica D 313, 61–80 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 19.Demontis, F., Ortenzi, G., Sommacal, M., van der Mee, C.: The continuous classical Heisenberg ferromagnet equation with in-plane asymptotic conditions. II. IST and closed-form soliton solutions. In: Ricerche di Matematica. https://doi.org/10.1007/s11587-018-0395-7
- 20.Demontis, F., Prinari, B., van der Mee, C., Vitale, F.: The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions. J. Math. Phys. 55, 101505 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 21.Angelis, M.D., Renno, P.: Existence, uniqueness and a priori estimates for a nonlinear integro-differential equation. Phys. Lett. A 57, 95–109 (2008)MathSciNetMATHGoogle Scholar
- 22.van der Mee, C., Nonlinear evolution models of integrable type, vol. 11, e-Lectures Notes, SIMAI (2013)Google Scholar
- 23.Demontis, F.: “Matrix Zakharov-Shabat system and inverse scattering transform” (2012), also: Direct and inverse scattering of the matrix Zakharov-Shabat system, Ph.D. thesis, University of Cagliari, Italy (2007)Google Scholar
- 24.Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)MathSciNetCrossRefMATHGoogle Scholar