Abstract
Developing new pristine metal-organic framework (MOF)-based electrode material for high-performance supercapacitors is a considerable attractive task. Herein, a Cu4 cluster-based three-dimensional (3D) MOF ([Cu4(μ3-OH)2(atrz)2(1,3-BDC)3]·2H2O, Cu-atrz-BDC; atrz, 4-amino-1,2,4-triazole; 1,3-H2BDC, 1,3-benzenedicarboxylic acid) was synthesized and characterized by infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, nitrogen adsorption-desorption, scanning electron microscopy, and X-ray photoelectron spectroscopy. The Cu-atrz-BDC firstly was used as an electrode material for supercapacitor. In a three-electrode system, the Cu-atrz-BDC electrode exhibited ultrahigh specific capacitance of 5525 F g−1 at 1 A g−1 and its specific capacitance can also keep about 886 F g−1 after 1000 cycles at 3 A g−1. Importantly, the Cu-atrz-BDC as the positive electrode and the rGO as the negative electrode were assembled into an asymmetric supercapacitor with excellent cycling stability, displaying the maximum energy density of 9.96 Wh kg−1 at a power density of 0.81 kW kg−1. The high supercapacitive performance might be ascribed to its porous three-dimensional structure, the nanosized particles, and better conductivity.
This is a preview of subscription content, access via your institution.







References
- 1.
Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444
- 2.
Li JR, Sculley J, Zhou HC (2012) Metal−organic frameworks for separations. Chem Rev 112(2):869–932
- 3.
Wang B, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453(7192):207–211
- 4.
Sun GC, Yu LL, Hu Y, Sha YY, Rong HR, Li BL, Liu HJ, Liu Q (2019) A manganese-based coordination polymer containing no solvent as a high performance anode in li-ion batteries. Cryst Growth Des 19(11):6503–6510
- 5.
Song YD, Yu LL, Gao YR, Shi CD, Cheng ML, Wang XM, Liu HJ, Liu Q (2017) One-dimensional zinc-based coordination polymer as a higher capacity anode material for lithium ion batteries. Inorg Chem 56(19):11603–11609
- 6.
Liu Q, Yu LL, Wang Y, Ji YZ, Horvat J, Cheng ML, Jia XY, Wang GX (2013) Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property and electrochemical performance in lithium-ion batteries. Inorg Chem 52(6):2817–2822
- 7.
Rajak R, Saraf M, Verma S, Kumar R, Mobin S (2019) Dy(III)-based metal–organic framework as a fluorescent probe for highly selective detection of picric acid in aqueous medium. Inorg Chem 58(23):16065–16074
- 8.
Wang HY, Su J, Ma JP, Yu F, Leong CF, D’Alessandro DM, Kurmoo M, Zuo JL (2019) Concomitant use of tetrathiafulvalene and 7,7,8,8-tetracyanoquinodimethane within the skeletons of metal–organic frameworks: structures, magnetism, and electrochemistry. Inorg Chem 58(13):8657–8664
- 9.
Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854
- 10.
Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828
- 11.
Shao YL, El-Kady MF, Sun JY, Li YG, Zhang QH, Zhu MF, Wang HZ, Dunn B, Kaner BR (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(18):9233–9238
- 12.
Zhang CL, Yin HH, Han M, Bao JC, Pang H, Zhu JM (2014) Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano 8(4):3761–3770
- 13.
Liu F, Chen YY, Liu Y, Bao JC, Han M, Dai ZH (2019) Integrating ultrathin and modified NiCoAl-layered double-hydroxide nanosheets with N-doped reduced graphene oxide for high-performance all-solid-state supercapacitors. Nanoscale 11:9896–9905
- 14.
Tavakoli F, Rezaei B, Taghipour Jahromi AR, Ensafi AA (2020) Facile synthesis of yolk-shelled CuCo2Se4 microspheres as a novel electrode material for supercapacitor application. ACS Appl Mater Interfaces 12(1):418–427
- 15.
Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016) Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev 307:361–381
- 16.
Zheng SS, Xue HG, Pang H (2018) Supercapacitors based on metal coordination materials. Coord Chem Rev 373:2–21
- 17.
Díaz R, Orcajo MG, Botas JA, Calleja G, Palma J (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128
- 18.
Wang X, Liu X, Rong H, Song Y, Wen H, Liu Q (2017) Layered manganese-based metal–organic framework as a high capacity electrode material for supercapacitors. RSC Adv 7(47):29611–29617
- 19.
Zhang Y, Lin B, Sun Y, Zhang X, Yang H, Wang J (2015) Carbon nanotubes @ metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage. RSC Adv 5(72):58100–58106
- 20.
Campagnol N, Romero-Vara R, Deleu W, Stappers L, Binnemans K, Devos DE, Fransaer J (2014) A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe). ChemElectroChem 1(7):1182–1188
- 21.
Lee DY, Yoon SJ, Shrestha NK, Lee SH, Ahn H, Han SH (2012) Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Microporous Mesoporous Mater 153:163–165
- 22.
Lee DY, Shinde DV, Kim EK, Lee W, Oh IW, Shrestha NK, Lee JK, Han SH (2013) Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology. Microporous Mesoporous Mater 171:53–57
- 23.
Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137(15):4920–4923
- 24.
Liu X, Shi C, Zhai C, Cheng M, Liu Q, Wang G (2016) Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl Mater Interfaces 8(7):4585–4591
- 25.
Yu H, Xu D, Xu Q (2015) Dual template effect of supercritical CO2 in ionic liquid to fabricate a highly mesoporous cobalt metal–organic framework. Chem Commun 51(67):13197–13200
- 26.
Rajak R, Saraf M, Mohammadaand A, Mobin MS (2017) Design and construction of a ferrocene basedinclined polycatenated Co-MOF for supercapacitorand dye adsorption applications. J Mater Chem A 5(34):17998–18011
- 27.
Yang J, Ma ZH, Gao WX, Wei M (2016) Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode. Chem Eur J 23(3):631–636
- 28.
Ramachandrana ZC, Luo D, Wang K, Wang F (2018) Morphology-dependent electrochemical properties of cobalt-basedmetal organic frameworks for supercapacitor electrode materials. Electrochim Acta 267:170–180
- 29.
Wang KB, Cao XR, Wang SE, Zhao WJ, Xu JY, Wang ZK, Wu H (2018) Interpenetrated and polythreaded CoII-organic frameworks as a supercapacitor electrode material with ultrahigh capacity and excellent energy delivery efficiency. ACS Appl Mater Interfaces 10(10):9104–9115
- 30.
Zhu GL, Wen H, Ma M, Wang WY, Yang L, Wang LC, Shi XF, Cheng XW, Sun XP, Yao YD (2018) A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chem Commun 54(74):10499–10502
- 31.
Sanati S, Abazari R, Morsali A, Kirillov AM, Junk PC, Wang J (2019) An asymmetric supercapacitor based on a non-calcined 3D pillared cobalt(II) metal−organic framework with long cyclic stability. Inorg Chem 58(23):16100–16111
- 32.
Gao GX, Wang XM, Ma YW, Rong HR, Lai LF, Liu Q (2020) A three-dimensional Co5-cluster based MOF as a high performance electrode material for supercapacitor. Ionics 269(119):5189–5197
- 33.
Yang J, Xiong PX, Zheng C, Qiu H, Wei MD (2014) Metal–organic frameworks: a new promising class of material for high performances supercapacitor electrode. J Mater Chem A 2(39):16640–16644
- 34.
Kang L, Sun SX, Kong LB, Lang JW, Luo YC (2014) Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chin Chem Lett 25(6):957–961
- 35.
Shi CD, Wang XM, Gao YR, Rong HR, Song YD, Liu HJ, Liu Q (2017) Nickel metal-organic framework nanoparticles as electrode materials for Li-ion batteries and supercapacitors. J Solid State Electrochem 21(8):2415–2423
- 36.
Wen P, Gong P, Sun J, Wang J, Yang S (2015) Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J Mater Chem A 3(26):13874–13883
- 37.
Qu C, Jiao Y, Zhao B, Chen D, Zou R, Walton KS, Liu M (2016) Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26:66–73
- 38.
Jiao Y, Pei J, Yan CS, Chen DH, Hu YY, Chen G (2016) Layered nickel metal–organic framework for high performance alkaline battery-supercapacitorhybrid devices. J Mater Chem A 4(34):13344–13351
- 39.
Yan Y, Gu P, Zheng SS, Zheng MB, Pang H, Xue HG (2016) Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A 4(8):19078–19085
- 40.
Sheberla D, Bachman JC, Elias JS, Sun CJ, Yang SH (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16(2):220–224
- 41.
Wang KB, Wang ZK, Wang X, Zhou XQ, Tao YH, Wu H (2018) Flexible long-chain-linker constructed Ni-based metal-organic frameworkswith 1D helical channel and their pseudo-capacitor behavior studies. J Power Sources 377:44–51
- 42.
Deng T, Zhang W, Arcelus O, Wang D, Shi XY, Zhang XY, Carrasco J, Rojo T, Zheng WT (2018) Vertically co-oriented two dimensional metal-organic frameworks for packaging enhanced supercapacitive performance. Chem Commun 1(1):6
- 43.
Xiang YH, Yan XL, Wang X, Li SN, Jiang YS, Hu MC, Zhai QZ (2018) Excellent supercapacitor performance of robust nickel−organic framework materials achieved by tunable porosity, inner-clusterredox, and in situ fabrication with graphene oxide. Cryst Growth Des 18(10):6035–6045
- 44.
Liu K, Deng LM, Li HD, Bao YX, Xiao ZY, Li B, Zhou Q, Geng YL, Wang L (2019) Two isostructural Co/Ni fluorine-containing metal-organic frameworks for dye adsorption and supercapacitor. J Soild State Chem 275(p):1–7
- 45.
Zhao J, Li Q, Han L, Liu R (2019) Spherical mesocrystals from self-assembly of folic acid and nickel(II) ion for high-performance supercapacitors. J Colloid Interface Sci 538:142–148
- 46.
Xue YY, Li SN, Jiang YC, Hu MC, Zhai QG (2019) Quest for 9-connected robust metal-organic framework platforms on the base of [M3(O/OH)(COO)6(pyridine)3] cluster as excellent gas separationandasymmetric supercapacitormaterials. J Mater Chem A 7(9):4640–4650
- 47.
Liu Q, Liu X, Shi C, Zhang Y, Feng X, Cheng ML, Su S, Gu J (2015) A copper-based layered coordination polymer: synthesis, magnetic properties and electrochemical performance in supercapacitors. Dalton Trans 44(44):19175–19184
- 48.
Li WH, Ding K, Tian HR, Yao MS, Nath B, Deng WH, Wang YB, Xu G (2017) Conductive metal–organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv Funct Mater 27(27):1702067
- 49.
Yu L, Wang X, Cheng M, Rong H, Song Y, Liu Q (2017) A three-dimensional copper coordination polymer constructed by 3-methyl-1H-pyrazole-4-carboxylic acid with higher capacitance for supercapacitors. Cryst Growth Des 18(1):280–285
- 50.
Ramachandran R, Zhao CH, Luo D, Wang K, Wang F (2018) Synthesis of copper benzene-1,3,5-tricarboxylate metal organic frameworks with mixed phases as the electrode material for supercapacitor applications. Appl Surf Sci 460:33–39
- 51.
Choi KM, Jeong HM, Park JH, Zhang YB, Kang JK, Yaghi OM (2014) Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8(7):7451–7457
- 52.
Zhang D, Shi H, Zhang R, Zhang Z, Wang N, Li J, Yuan B, Bai H, Zhang J (2015) Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv 5(72):58772–58776
- 53.
Tan Y, Zhang W, Gao Y, Wu J, Tang B (2015) Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Adv 5(23):17601–17605
- 54.
Du M, Chen M, Yang XG, Wen J, Wang X, Fang SM, Liu CS (2014) A channel-type mesoporous in(iii)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors. J Mater Chem A 2(25):9828–9834
- 55.
Yang J, Zheng C, Xiong P, Li Y, Wei M (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2(44):19005–19010
- 56.
Jiao Y, Pei J, Chen DH, Yan CS, Hu YY, Zhang Q, Chen G (2017) Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J Mater Chem A 5(3):1094–1102
- 57.
Gao S, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2018) Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. J Colloid Interface Sci 531:83–90
- 58.
Wang J, Zhong Q, Xiong YH, Cheng DY, Zeng YQ, Bu YF (2019) Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as ahigh-performance electrode material for supercapacitors. Appl Surf Sci 483:1158–1165
- 59.
Rajak R, Saraf M, Mobin SM (2019) Robust heterostructures of a bimetallic sodium–zinc metal–organic framework and reduced graphene oxide for high-performance supercapacitors. J Mater Chem A 7(4):1725–1736
- 60.
Kazemi SH, Hosseinzadeh B, Kazemi H, Kiani MA, Hajati S (2018) Facile synthesis of mixed metal-organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. ACS Appl Mater Interfaces 10(27):23063–23073
- 61.
Wang YZ, Liu YX, Wang HQ, Liu W, Li Y, Zhang JF, Hou H, Yang JL (2019) Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl Energy Mater 2(3):2063–2071
- 62.
Wang XL, Zhao W, Zhang JW, Lu QL (2013) Three tetranuclear copper(II) cluster-based complexes constructed from4-amino-1,2,4-triazole and different aromatic carboxylates: assembly, structures, electrochemical and magnetic properties. J Solid State Chem 198:162–168
- 63.
Hsu YK, Chen YC, Lin YG (2012) Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes. J Electroanal Chem 673:43–47
- 64.
Chen K, Xue DF (2013) Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials. J Phys Chem C 117(44):22576–22583
- 65.
Jiang RP, Zhao C, Huang ZX, Liu X, Wang DY, Hui Z, Xu XW (2020) An in situ growth strategy of NiCo-MOF nanosheets with more activity sites for asymmetric supercapacitors. Ionics 26:6309–6318
Funding
We acknowledge the financial support from the National Natural Science Foundation of China (No. 21975034), the Research Project of Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, and the Natural Science Research Key Project of Jiangsu Colleges and Universities (No. 16KJA430005).
Author information
Affiliations
Contributions
Y. Ma and G. Gao have equally contributed to this work.
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
ESM 1
(DOC 1212 kb).
Rights and permissions
About this article
Cite this article
Ma, Y., Gao, G., Su, H. et al. A Cu4 cluster-based MOF as a supercapacitor electrode material with ultrahigh capacitance. Ionics (2021). https://doi.org/10.1007/s11581-021-03954-w
Received:
Revised:
Accepted:
Published:
Keywords
- Copper compound
- MOF
- Supercapacitors
- Electrode materials