Impact of LiTi2(PO4)3 coating on the electrochemical performance of Li1.2Ni0.13Mn0.54Co0.13O2 using a wet chemical method


NASICON-type solid-state electrolyte has been reported to improve the structural and electrochemical stability of high nickel positive electrode materials; however, the impact of NASICON-type solid-state electrolyte on the performance of lithium-rich cathode has been barely studied. In this work, various contents of LiTi2(PO4)3 (LTP)-coated Li1.2Ni0.13Mn0.54Co0.13O2 have been made via a wet chemical method followed by sintering at 550 °C for 3 h. Those modified materials failed to show improvement in electrochemical properties including specific capacity, coulombic efficiency (CE), rate capability, and cycle life compared with uncoated material. Thick LTP coating even decreases the average discharge voltage and increases the impedance and voltage hysteresis of cells. XRD, TEM, and SAED images revealed non-uniform coating with multiple components including LiTi2(PO4)3, TiP2O7, and TiO2. This work suggests LTP coating on Li1.2Ni0.13Mn0.54Co0.13O2 using a wet chemical method might be challenging and need to be carefully carried out.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    CAS  Article  Google Scholar 

  2. 2.

    Andre D, Kim SJ, Lamp P, Lux SF, Maglia F, Paschos O, Stiaszny B (2015) Future generations of cathode materials: An automotive industry perspective. J Mater Chem A 3:6709–6732

    CAS  Article  Google Scholar 

  3. 3.

    Schmuch R, Wagner R, Hörpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3:267–278

    CAS  Article  Google Scholar 

  4. 4.

    Betz J, Bieker G, Meister P, Placke T, Winter M, Schmuch R (2019) Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv Energy Mater 9:1803170–1803187

    Article  Google Scholar 

  5. 5.

    Lu Z, MacNeil DD, Dahn JR (2001) Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochem Solid-State Lett 4:A191–A194

    CAS  Article  Google Scholar 

  6. 6.

    Zuo W, Luo M, Liu X, Wu J, Liu H, Li J, Winter M, Fu R, Yang W, Yang Y (2020) Li-rich cathodes for researchable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy Environ Sci 13:4450–4497

    CAS  Article  Google Scholar 

  7. 7.

    Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A822

    CAS  Article  Google Scholar 

  8. 8.

    Wang L, Dai A, Xu W, Lee S, Cha W, Harder R, Liu T, Ren Y, Yin G, Zuo P, Wang J, Lu J, Wang J (2020) Structure distrotion induced by manganese activation in a lithium-rich layered cathode. J Am Chem Soc 142:14966–14973

    CAS  Article  Google Scholar 

  9. 9.

    Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013–16028

    CAS  Article  Google Scholar 

  10. 10.

    Zhu Z, Gao R, Waluyo I, Dong Y, Hunt A, Lee J, Li J (2020) Stabilized Co-free Li-rich oxide cathode particles with an artificial surface prereconstruction. Adv Energy Mater 10:2001120–2001130

    CAS  Article  Google Scholar 

  11. 11.

    Xiao B, Liu H, Chen N, Banis MN, Yu H, Liang J, Sun Q, Sham TK, Li R, Cai M, Botton GA, Sun X (2020) Size-mediated recurring spinel sub-nanodomains in Li- and Mn-rich layered cathode materials. Angew Chem Int Ed 59:14313–14320

    CAS  Article  Google Scholar 

  12. 12.

    Hu S, Li Y, Chen Y, Peng J, Zhou T, Pang WK, Didier C, Peterson VK, Wang H, Li Q, Guo Z (2019) Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode. Adv Energy Mater 9:1–10

    Google Scholar 

  13. 13.

    Liu Y, Yang Z, Zhong J, Li J, Li R, Yu Y, Kang F (2019) Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance. ACS Nano 13:11891–11900

    CAS  Article  Google Scholar 

  14. 14.

    Liu Y, Wang J, Wu J, Ding Z, Yao P, Zhang S, Chen Y (2020) 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries. Adv Energy Mater 10:1903139–1903148

    CAS  Article  Google Scholar 

  15. 15.

    Watanabe A, Yamamoto K, Orikasa Y, Oishi M, Nakanishi K, Uchiyama T, Matsunaga T, Uchimoto Y (2020) Relationship between rate performance and electronic/structural changes during oxygen redox of lithium-rich 4d/3d transition metal oxides. Solid State Ionics 357:115459–115466

    CAS  Article  Google Scholar 

  16. 16.

    Liu P, Zhang H, He W, Xiong T, Cheng Y, Xie Q, Ma Y, Zheng H, Wang L, Zhu ZZ, Peng Y, Mai L, Peng DL (2019) Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J Am Chem Soc 141:10876–10882

    CAS  Article  Google Scholar 

  17. 17.

    Li B, Assat G, Pearce PE, Nikitina VA, Iadecola A, Delacourt C, Tarascon JM (2020) Exploring the kinetic limitations causing unusual low-voltage Li reinsertion in either layered or tridimensional Li2IrO3 cathode materials. Chem Mater 32:2133–2147

    CAS  Article  Google Scholar 

  18. 18.

    Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S (2016) Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater 6:16600906–16600922

    Google Scholar 

  19. 19.

    Zhang X, Belharouak I, Li L, Lei Y, Elam JW, Nie A, Chen X, Yassar RS, Axelbaum RL (2013) Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater 3:1299–1307

    CAS  Article  Google Scholar 

  20. 20.

    Xiao B, Wang B, Liu J, Kaliyappan K, Sun Q, Liu Y, Dadheech G, Balogh MP, Yang L, Sham TK, Li R, Cai M, Sun X (2017) Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 34:120–130

    CAS  Article  Google Scholar 

  21. 21.

    Sharma R, Haber S, Evenstein E, Saha A, Brotvein O, Kratish Y, Bravo-Zhivotovskii D, Apeloig Y, Leskes M, Noked M (2020) Alkylated LixSiyOz coating for stabilization of Li-rich layered oxide cathodes. Energy Storage Mater 33:268–275

  22. 22.

    Zheng L, Wei C, Garayt MDL, MacInnis J, Obrovac MN (2019) Spherically smooth cathode particles by mechanofusion processing. J Electrochem Soc 166:A2924–A2927

    CAS  Article  Google Scholar 

  23. 23.

    Geng C, Trussler S, Johnson M et al (2020) A low-cost instrument for dry particle fusion coating of advanced electrode material particles at the laboratory scale. J Electrochem Soc 167:110509–110515

    CAS  Article  Google Scholar 

  24. 24.

    Liu H, Chen C, Du C, He X, Yin G, Song B, Zuo P, Cheng X, Ma Y, Gao Y (2015) Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. J Mater Chem A 3:2634–2641

    CAS  Article  Google Scholar 

  25. 25.

    Chen JJ, Li ZD, Xiang HF, Wu WW, Cheng S, Zhang LJ, Wang QS, Wu YC (2015) Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries. RSC Adv 5:3031–3038

    CAS  Article  Google Scholar 

  26. 26.

    Wu F, Li Q, Bao L, Zheng Y, Lu Y, Su Y, Wang J, Chen S, Chen R, Tian J (2018) Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials. Electrochim Acta 260:986–993

    CAS  Article  Google Scholar 

  27. 27.

    Chen D, Tu W, Chen M, Hong P, Zhong X, Zhu Y, Yu Q, Li W (2016) Synthesis and performances of Li-rich@AlF3@graphene as cathode of lithium ion battery. Electrochim Acta 193:45–53

    CAS  Article  Google Scholar 

  28. 28.

    Liu Y, Huang X, Qiao Q, Wang Y, Ye S, Gao X (2014) Li3V2(PO4)3-coated Li1.17Ni0.2Co0.05Mn0.58O2 as the cathode materials with high rate capability for Lithium ion batteries. Electrochim Acta 147:696–703

    CAS  Article  Google Scholar 

  29. 29.

    Luo JY, Xia YY (2007) Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv Funct Mater 17:3877–3884

    CAS  Article  Google Scholar 

  30. 30.

    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell KG, Bucharsky EC, Hoffmann MJ, Ehrenberg H (2016) Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor. Inorg Chem 55:2941–2945

    CAS  Article  Google Scholar 

  31. 31.

    Xiao Y, Miara LJ, Wang Y, Ceder G (2019) Computational screening of cathode coatings for solid-state batteries. Joule 3:1252–1275

    CAS  Article  Google Scholar 

  32. 32.

    Jin X, Xu Q, Liu H, Yuan X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26

    CAS  Article  Google Scholar 

  33. 33.

    Shen CH, Huang L, Lin Z, Shen SY, Wang Q, Su H, Fu F, Zheng XM (2014) Kinetics and structural changes of Li-Rich layered oxide 0.5Li2MnO3·0.5LiNi0.292Co0.375Mn0.333O2 material investigated by a novel technique combining in situ XRD and a multipotential step. ACS Appl Mater Interfaces 6:13271–13279

    CAS  Article  Google Scholar 

  34. 34.

    Chen T, Wang F, Li X, Yan X, Wang H, Deng B, Xie Z, Qu M (2019) Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-Rich LiNi0.8Co0.15Al0.05O2 cathode material. Appl Surf Sci 465:863–870

    CAS  Article  Google Scholar 

  35. 35.

    Qu X, Yu Z, Ruan D, Dou A, Su M, Zhou Y, Liu Y, Chu D (2020) Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating. ACS Sustain Chem Eng 8:5819–5830

    CAS  Article  Google Scholar 

  36. 36.

    Lee Y, Lee J, Lee KY, Mun J, Lee JK, Choi W (2016) Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries. J Power Sources 315:284–293

    CAS  Article  Google Scholar 

  37. 37.

    Cui C, Fan X, Zhou X, Chen J, Wang Q, Ma L, Yang C, Hu E, Yang XQ, Wang C (2020) Structure and interface design enable stable Li-rich cathode. J Am Chem Soc 142:8918–8927

    CAS  Article  Google Scholar 

  38. 38.

    Cho J, Kim YJ, Park B (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12:3788–3791

    CAS  Article  Google Scholar 

  39. 39.

    Yang H, Wu HH, Ge M, Li L, Yuan Y, Yao Q, Chen J, Xia L, Zheng J, Chen Z, Duan J, Kisslinger K, Zeng XC, Lee WK, Zhang Q, Lu J (2019) Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Funct Mater 29:1808825–1808837

    Article  Google Scholar 

  40. 40.

    Aatiq A, Menetrier M, Corguennec L, Suard E, Delmas C (2002) On the structure of Li3Ti2(PO4)3. J Mater Chem 12:2971–2978

    CAS  Article  Google Scholar 

  41. 41.

    Norberg ST, Svensson G, Albertsson J (2000) A TiP2O7 superstructure. Acta Crystallogr C 57:225–227

    Article  Google Scholar 

Download references


The authors appreciate the financial support of the National Natural Science Foundation of China (Project numbers. 51834004, 51774076, 51704062) and the Fundamental Research Funds for the Central Universities (N2025019).

Author information



Corresponding author

Correspondence to Ying Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOCX 5473 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Li, Y., Luo, Y. et al. Impact of LiTi2(PO4)3 coating on the electrochemical performance of Li1.2Ni0.13Mn0.54Co0.13O2 using a wet chemical method. Ionics (2021).

Download citation


  • Lithium-rich material,
  • Surface modification,
  • Electrochemical performance,
  • Lithium-ion batteries