Abstract
NASICON-type solid-state electrolyte has been reported to improve the structural and electrochemical stability of high nickel positive electrode materials; however, the impact of NASICON-type solid-state electrolyte on the performance of lithium-rich cathode has been barely studied. In this work, various contents of LiTi2(PO4)3 (LTP)-coated Li1.2Ni0.13Mn0.54Co0.13O2 have been made via a wet chemical method followed by sintering at 550 °C for 3 h. Those modified materials failed to show improvement in electrochemical properties including specific capacity, coulombic efficiency (CE), rate capability, and cycle life compared with uncoated material. Thick LTP coating even decreases the average discharge voltage and increases the impedance and voltage hysteresis of cells. XRD, TEM, and SAED images revealed non-uniform coating with multiple components including LiTi2(PO4)3, TiP2O7, and TiO2. This work suggests LTP coating on Li1.2Ni0.13Mn0.54Co0.13O2 using a wet chemical method might be challenging and need to be carefully carried out.
This is a preview of subscription content, access via your institution.







References
- 1.
Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367
- 2.
Andre D, Kim SJ, Lamp P, Lux SF, Maglia F, Paschos O, Stiaszny B (2015) Future generations of cathode materials: An automotive industry perspective. J Mater Chem A 3:6709–6732
- 3.
Schmuch R, Wagner R, Hörpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3:267–278
- 4.
Betz J, Bieker G, Meister P, Placke T, Winter M, Schmuch R (2019) Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv Energy Mater 9:1803170–1803187
- 5.
Lu Z, MacNeil DD, Dahn JR (2001) Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochem Solid-State Lett 4:A191–A194
- 6.
Zuo W, Luo M, Liu X, Wu J, Liu H, Li J, Winter M, Fu R, Yang W, Yang Y (2020) Li-rich cathodes for researchable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy Environ Sci 13:4450–4497
- 7.
Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A822
- 8.
Wang L, Dai A, Xu W, Lee S, Cha W, Harder R, Liu T, Ren Y, Yin G, Zuo P, Wang J, Lu J, Wang J (2020) Structure distrotion induced by manganese activation in a lithium-rich layered cathode. J Am Chem Soc 142:14966–14973
- 9.
Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013–16028
- 10.
Zhu Z, Gao R, Waluyo I, Dong Y, Hunt A, Lee J, Li J (2020) Stabilized Co-free Li-rich oxide cathode particles with an artificial surface prereconstruction. Adv Energy Mater 10:2001120–2001130
- 11.
Xiao B, Liu H, Chen N, Banis MN, Yu H, Liang J, Sun Q, Sham TK, Li R, Cai M, Botton GA, Sun X (2020) Size-mediated recurring spinel sub-nanodomains in Li- and Mn-rich layered cathode materials. Angew Chem Int Ed 59:14313–14320
- 12.
Hu S, Li Y, Chen Y, Peng J, Zhou T, Pang WK, Didier C, Peterson VK, Wang H, Li Q, Guo Z (2019) Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode. Adv Energy Mater 9:1–10
- 13.
Liu Y, Yang Z, Zhong J, Li J, Li R, Yu Y, Kang F (2019) Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance. ACS Nano 13:11891–11900
- 14.
Liu Y, Wang J, Wu J, Ding Z, Yao P, Zhang S, Chen Y (2020) 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries. Adv Energy Mater 10:1903139–1903148
- 15.
Watanabe A, Yamamoto K, Orikasa Y, Oishi M, Nakanishi K, Uchiyama T, Matsunaga T, Uchimoto Y (2020) Relationship between rate performance and electronic/structural changes during oxygen redox of lithium-rich 4d/3d transition metal oxides. Solid State Ionics 357:115459–115466
- 16.
Liu P, Zhang H, He W, Xiong T, Cheng Y, Xie Q, Ma Y, Zheng H, Wang L, Zhu ZZ, Peng Y, Mai L, Peng DL (2019) Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J Am Chem Soc 141:10876–10882
- 17.
Li B, Assat G, Pearce PE, Nikitina VA, Iadecola A, Delacourt C, Tarascon JM (2020) Exploring the kinetic limitations causing unusual low-voltage Li reinsertion in either layered or tridimensional Li2IrO3 cathode materials. Chem Mater 32:2133–2147
- 18.
Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S (2016) Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater 6:16600906–16600922
- 19.
Zhang X, Belharouak I, Li L, Lei Y, Elam JW, Nie A, Chen X, Yassar RS, Axelbaum RL (2013) Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater 3:1299–1307
- 20.
Xiao B, Wang B, Liu J, Kaliyappan K, Sun Q, Liu Y, Dadheech G, Balogh MP, Yang L, Sham TK, Li R, Cai M, Sun X (2017) Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 34:120–130
- 21.
Sharma R, Haber S, Evenstein E, Saha A, Brotvein O, Kratish Y, Bravo-Zhivotovskii D, Apeloig Y, Leskes M, Noked M (2020) Alkylated LixSiyOz coating for stabilization of Li-rich layered oxide cathodes. Energy Storage Mater 33:268–275
- 22.
Zheng L, Wei C, Garayt MDL, MacInnis J, Obrovac MN (2019) Spherically smooth cathode particles by mechanofusion processing. J Electrochem Soc 166:A2924–A2927
- 23.
Geng C, Trussler S, Johnson M et al (2020) A low-cost instrument for dry particle fusion coating of advanced electrode material particles at the laboratory scale. J Electrochem Soc 167:110509–110515
- 24.
Liu H, Chen C, Du C, He X, Yin G, Song B, Zuo P, Cheng X, Ma Y, Gao Y (2015) Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. J Mater Chem A 3:2634–2641
- 25.
Chen JJ, Li ZD, Xiang HF, Wu WW, Cheng S, Zhang LJ, Wang QS, Wu YC (2015) Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries. RSC Adv 5:3031–3038
- 26.
Wu F, Li Q, Bao L, Zheng Y, Lu Y, Su Y, Wang J, Chen S, Chen R, Tian J (2018) Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials. Electrochim Acta 260:986–993
- 27.
Chen D, Tu W, Chen M, Hong P, Zhong X, Zhu Y, Yu Q, Li W (2016) Synthesis and performances of Li-rich@AlF3@graphene as cathode of lithium ion battery. Electrochim Acta 193:45–53
- 28.
Liu Y, Huang X, Qiao Q, Wang Y, Ye S, Gao X (2014) Li3V2(PO4)3-coated Li1.17Ni0.2Co0.05Mn0.58O2 as the cathode materials with high rate capability for Lithium ion batteries. Electrochim Acta 147:696–703
- 29.
Luo JY, Xia YY (2007) Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv Funct Mater 17:3877–3884
- 30.
Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell KG, Bucharsky EC, Hoffmann MJ, Ehrenberg H (2016) Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor. Inorg Chem 55:2941–2945
- 31.
Xiao Y, Miara LJ, Wang Y, Ceder G (2019) Computational screening of cathode coatings for solid-state batteries. Joule 3:1252–1275
- 32.
Jin X, Xu Q, Liu H, Yuan X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26
- 33.
Shen CH, Huang L, Lin Z, Shen SY, Wang Q, Su H, Fu F, Zheng XM (2014) Kinetics and structural changes of Li-Rich layered oxide 0.5Li2MnO3·0.5LiNi0.292Co0.375Mn0.333O2 material investigated by a novel technique combining in situ XRD and a multipotential step. ACS Appl Mater Interfaces 6:13271–13279
- 34.
Chen T, Wang F, Li X, Yan X, Wang H, Deng B, Xie Z, Qu M (2019) Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-Rich LiNi0.8Co0.15Al0.05O2 cathode material. Appl Surf Sci 465:863–870
- 35.
Qu X, Yu Z, Ruan D, Dou A, Su M, Zhou Y, Liu Y, Chu D (2020) Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating. ACS Sustain Chem Eng 8:5819–5830
- 36.
Lee Y, Lee J, Lee KY, Mun J, Lee JK, Choi W (2016) Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries. J Power Sources 315:284–293
- 37.
Cui C, Fan X, Zhou X, Chen J, Wang Q, Ma L, Yang C, Hu E, Yang XQ, Wang C (2020) Structure and interface design enable stable Li-rich cathode. J Am Chem Soc 142:8918–8927
- 38.
Cho J, Kim YJ, Park B (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12:3788–3791
- 39.
Yang H, Wu HH, Ge M, Li L, Yuan Y, Yao Q, Chen J, Xia L, Zheng J, Chen Z, Duan J, Kisslinger K, Zeng XC, Lee WK, Zhang Q, Lu J (2019) Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Funct Mater 29:1808825–1808837
- 40.
Aatiq A, Menetrier M, Corguennec L, Suard E, Delmas C (2002) On the structure of Li3Ti2(PO4)3. J Mater Chem 12:2971–2978
- 41.
Norberg ST, Svensson G, Albertsson J (2000) A TiP2O7 superstructure. Acta Crystallogr C 57:225–227
Acknowledgements
The authors appreciate the financial support of the National Natural Science Foundation of China (Project numbers. 51834004, 51774076, 51704062) and the Fundamental Research Funds for the Central Universities (N2025019).
Author information
Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
ESM 1
(DOCX 5473 kb)
Rights and permissions
About this article
Cite this article
Zhang, N., Li, Y., Luo, Y. et al. Impact of LiTi2(PO4)3 coating on the electrochemical performance of Li1.2Ni0.13Mn0.54Co0.13O2 using a wet chemical method. Ionics (2021). https://doi.org/10.1007/s11581-021-03946-w
Received:
Revised:
Accepted:
Published:
Keywords
- Lithium-rich material,
- Surface modification,
- NASICON,
- Electrochemical performance,
- Lithium-ion batteries