Comparative analysis of different separators for the electrochemical performances and long-term stability of high-power lithium-ion batteries

Abstract

As a critical component, high-performance separator is in urgent demand for the development of high-power lithium-ion battery (LIB). Herein, five commercial separators including cellulose, polyethylene terephthalate (PET), aramid nonwovens, and polypropylene (PP) and polypropylene/polypropylene (PP/PP) polyolefin membranes were investigated and used as high-power LIB separators. Due to the high porosity (70%), low air permeability, high electrolyte uptake and ionic conductivity (1.37 mS cm−1), excellent electrolyte wettability, and good heat resistance for cellulose separator, the corresponding LIBs exhibit the best comprehensive performance with low resistance, good rate capability of 91.8% retention at 10 C, long-term stability at 65 °C, and high capacity retention of 95.5% after 2000 cycles, indicating the promising application in LIBs with high power and long-term stability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561

    Article  CAS  Google Scholar 

  3. 3.

    Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sust Energ Rev 89:292–308

    Article  Google Scholar 

  4. 4.

    Nitta N, Wu FX, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    CAS  Article  Google Scholar 

  5. 5.

    Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295

    CAS  Article  Google Scholar 

  6. 6.

    Wu F, Maier J, Yu Y (2020) Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 49:1569–1614

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Wang C, Wu L, Wang H, Zuo W, Li Y, Liu J (2015) Fabrication and shell optimization of synergistic TiO2-MoO3 core-shell nanowire array anode for high energy and power density lithium-ion batteries. Adv Funct Mater 25:3524–3533

    CAS  Article  Google Scholar 

  8. 8.

    Song J, Yu Z, Gordin ML, Wang D (2016) Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett 16:864–870

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Tang Y, Zhang Y, Li W, Ma B, Chen X (2015) Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev 44:5926–5940

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Meng J, Liu Z, Niu C, Xu L, Wang X, Li Q, Wei X, Yang W, Huang L, Mai L (2018) General oriented assembly of uniform carbon-confined metal oxide nanodots on graphene for stable and ultrafast lithium storage. Mater Horiz 5:78–85

    CAS  Article  Google Scholar 

  11. 11.

    Gong S, Jeon H, Lee H, Ryou MH, Lee YM (2017) Effects of an integrated separator/electrode assembly on enhanced thermal stability and rate capability of lithium-ion batteries. ACS Appl Mater Interfaces 9:17814–17821

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Ryou MH, Lee YM, Park JK, Choi JW (2011) Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv Mater 23:3066–3070

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Wang Q, Pechy P, Zakeeruddin SM, Exnar I, Grätzel M (2005) Novel electrolytes for Li4Ti5O12-based high power lithium ion batteries with nitrile solvents. J Power Sources 146:813–816

    CAS  Article  Google Scholar 

  14. 14.

    Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Lim JM, Oh RG, Cho W, Cho K, Cho M, Park MS (2017) Power characteristics of spinel cathodes correlated with elastic softness and phase transformation for high-power lithium-ion batteries. J Mater Chem A 5:3404–3411

    CAS  Article  Google Scholar 

  16. 16.

    Wang B, Ryu J, Choi S, Zhang X, Pribat D, Li X, Zhi L, Park S, Ruoff RS (2019) Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 13:2307–2315

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Odziomek M, Chaput F, Rutkowska A, Świerczek K, Olszewska D, Sitarz M, Lerouge F, Parola S (2017) Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat Commun 8:15636

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Yang GZ, Song HW, Cui H, Liu YC, Wang CX (2013) Ultrafast Li-ion battery anode with superlong life and excellent cycling stability from strongly coupled ZnO nanoparticle/conductive nanocarbon skeleton hybrid materials. Nano Energy 2:579–585

    CAS  Article  Google Scholar 

  19. 19.

    Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886

    CAS  Article  Google Scholar 

  20. 20.

    Lagadec MF, Zahn R, Wood V (2019) Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 4:16–25

    CAS  Article  Google Scholar 

  21. 21.

    Deimede V, Elmasides C (2015) Separators for lithium-ion batteries: a review on the production processes and recent developments. Energy Technol 3:453–468

    Article  Google Scholar 

  22. 22.

    Lee SH, Kim J, Kim BH, Yoon S, Cho KY (2019) Delamination-free multifunctional separator for long-term stability of lithium-ion batteries. Small 15:1804980

    Article  CAS  Google Scholar 

  23. 23.

    Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L (2015) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935

    Article  CAS  Google Scholar 

  24. 24.

    Xiong B, Chen R, Zeng F, Kang J, Men Y (2018) Thermal shrinkage and microscopic shutdown mechanism of polypropylene separator for lithium-ion battery: In-situ ultra-small angle X-ray scattering study. J Membr Sci 545:213–220

    CAS  Article  Google Scholar 

  25. 25.

    Yu L, Jin Y, Lin YS (2016) Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: effects of high melting point organic binder. RSC Adv 6:40002–40009

    CAS  Article  Google Scholar 

  26. 26.

    Man C, Jiang P, Wong KW, Zhao Y, Tang C, Fan M, Lau WM, Mei J, Li S, Liu H, Hui D (2014) Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide). J Mater Chem A 2:11980–11986

    CAS  Article  Google Scholar 

  27. 27.

    Rao E, McVerry B, Borenstein A, Anderson M, Jordan RS, Kaner RB (2018) Roll-to-roll functionalization of polyolefin separators for high-performance lithium-ion batteries. ACS Appl Energy Mater 1:3292–3300

    CAS  Article  Google Scholar 

  28. 28.

    Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Lin CE, Zhang H, Song YZ, Zhang Y, Yuan JJ, Zhu BK (2018) Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem A 6:991–998

    CAS  Article  Google Scholar 

  30. 30.

    Hao J, Lei G, Li Z, Wu L, Xiao Q, Wang L (2013) A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J Membr Sci 428:11–16

    CAS  Article  Google Scholar 

  31. 31.

    Li D, Xu H, Liu Y, Jiang Y, Li F, Xue B (2019) Fabrication of diatomite/polyethylene terephthalate composite separator for lithium-ion battery. Ionics 25:5341–5351

    CAS  Article  Google Scholar 

  32. 32.

    Zhang J, Kong Q, Liu Z, Pang S, Yue L, Yao J, Wang X, Cui G (2013) A highly safe and inflame retarding aramid lithium ion battery separator by a papermaking process. Solid State Ionics 245-246:49–55

    CAS  Article  Google Scholar 

  33. 33.

    Qi W, Lu C, Chen P, Han L, Yu Q, Xu RQ (2012) Electrochemical performances and thermal properties of electrospun poly(phthalazinone ether sulfone ketone) membrane for lithium-ion battery. Mater Lett 66:239–241

    CAS  Article  Google Scholar 

  34. 34.

    Croce F, Focarete ML, Hassoun J, Meschini I, Scrosati B (2011) A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning. Energy Environ Sci 4:921–927

    CAS  Article  Google Scholar 

  35. 35.

    Jiang X, Zhu X, Ai X, Yang H, Cao Y (2017) Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl Mater Interfaces 9:25970–25975

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Li Z, Xiong Y, Sun S, Zhang L, Li S, Liu X, Xu Z, Xu S (2018) Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator. J Membr Sci 565:50–60

    CAS  Article  Google Scholar 

  37. 37.

    Kritzer P (2006) Nonwoven support material for improved separators in Li-polymer batteries. J Power Sources 161:1335–1340

    CAS  Article  Google Scholar 

  38. 38.

    Weng B, Xu F, Alcoutlabi M, Mao Y, Lozano K (2015) Fibrous cellulose membrane mass produced via forcespinning for lithium-ion battery separators. Cellulose 22:1311–1320

    CAS  Article  Google Scholar 

  39. 39.

    Ding G, Qin B, Liu Z, Zhang J, Zhang B, Hu P, Zhang C, Xu G, Yao J, Cui G (2015) A Polyborate coated cellulose composite separator for high performance lithium ion batteries. J Electrochem Soc 162:A834–A838

    CAS  Article  Google Scholar 

  40. 40.

    Li H, Gao J, Li F, Huang JJ (2013) Study on cause of swelling in float-charged lithium ion batteries. Chinese J Power Sources 37:2123–2126

    CAS  Google Scholar 

  41. 41.

    Lee YS, Jeong YB, Kim DW (2010) Cycling performance of lithium-ion batteries assembled with a hybrid composite membrane prepared by an electrospinning method. J Power Sources 195:6197–6201

    CAS  Article  Google Scholar 

  42. 42.

    Kim SW, Ryou MH, Lee YM, Cho KY (2016) Effect of liquid oil additive on lithium-ion battery ceramic composite separator prepared with an aqueous coating solution. J Alloys Compd 675:341–347

    CAS  Article  Google Scholar 

  43. 43.

    Huo H, Li X, Chen Y, Liang J, Deng S, Gao X, Doyle-Davis K, Li R, Guo X, Shen Y, Nan CW, Sun X (2020) Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries. Energy Storage Mater 29:361–366

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the Project of Science and Technology Commission of Shanghai Municipality (19DZ1203102, 18DZ1201604, 17DZ1201403) and the Shanghai Professional and Technical Service Platform for Science and Technology Commission of Shanghai Municipality (19DZ2292400). The authors also wish to thank Shanghai Aowei Technology development Co., Ltd.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chongyang Yang or Jiaqiang Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 7259 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Yang, C., Xia, H. et al. Comparative analysis of different separators for the electrochemical performances and long-term stability of high-power lithium-ion batteries. Ionics (2021). https://doi.org/10.1007/s11581-021-03943-z

Download citation

Keywords

  • Lithium-ion battery
  • Separator
  • Fast-charging
  • High-power
  • Long-term stability