Evaluation of ITO/TiO2/Co3O4 as a non-enzymatic heterojunction electrode to glucose electrooxidation


Electroactive Co3O4 films were deposited by reactive magnetron sputtering (RMS) onto an assembly composed of a thin TiO2 layer over a commercial indium-doped tin oxide (ITO) conductor electrode, forming an ITO/TiO2/Co3O4 electrocatalytic platform. The platform was tested as a non-enzymatic device for glucose electrooxidation. The characterization of the electroactive TiO2/Co3O4 heterojunction was carried out by x-ray diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscope (FE-SEM), and energy dispersive spectroscopy (EDS) techniques. It was shown that the Co3O4 top layer is homogeneous and free from undesirable secondary phases. The electrochemical measurements, characterization and performance, were carried out by cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS). The cyclic voltammogram shows the linear dependence between the anodic and cathodic current peak of the redox process at the electrode surface, showing the electrochemical activity of the Co3+/Co4+ redox pair, as well as good reversibility and efficiency of charge transfer. From the chronoamperometric curves, two electrochemical parameters were estimated, the diffusion coefficient (D) and catalytic rate constant (kobs) of glucose with the values of 1.2 × 10−6 cm2 s−1 and 2.8 × 106 cm3 mol−1 s−1, respectively. The ITO/TiO2/Co3O4 heterojunction electrode showed an acceptable linear range from 10 to 1000 μM glucose concentration with a molar sensitivity (S) of 30.0 μA cm−2 mM−1 and a detection limit (LOD) of 1.42 μM (S/N = 3). These electrochemical results show the higher electroactivity of TiO2/Co3O4 heterojunction electrode than that of bare Co3O4 electrode and other literature results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Guo C, Zhang X, Huo H, Xu C, Han X (2013) Co3O4 microspheres with free-standing nanofibers for high performance non-enzymatic glucose sensor. Analyst 138:6727–6731

    PubMed  CAS  Google Scholar 

  2. 2.

    Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26(2):542–548

    PubMed  CAS  Google Scholar 

  3. 3.

    Kang M, Zhou H, Zhao N, Lv B (2020) Porous Co3O4 nanoplates as an efficient electromaterial for non-enzymatic glucose sensing. CrystEngComm 22:35–43

    CAS  Google Scholar 

  4. 4.

    Tian L, He G, Cai Y, Wu S, Su Y, Yan H, Yang C, Chen Y, Li L (2018) Co3O4 based non-enzymatic glucose sensor with high sensitivity and reliable stability derived from hollow hierarchical architecture. Nanotechnology 29(7):075502

    PubMed  Google Scholar 

  5. 5.

    Wang Q, Chen Y, Zhu R, Luo M, Zou Z, Yu H, Jiang X, Xiong X (2020) One-step synthesis of Co(OH)F nanoflower based on micro-plasma: As an effective non-enzymatic glucose sensor. Sensor Actuat B-Chem 304:127282

    CAS  Google Scholar 

  6. 6.

    Jang K-b, Park KR, Kim KM, Hyun S-k, Jeon J-e, Song YS, Park S-k, Moon K-i, Ahn C, Lim S-c, Lee J, Kim JC, Han H, Mhin S (2021) Synthesis of NiCo2O4 Nanostructures and Their Electrochemial Properties for Glucose Detection. Nanomaterials 11:55

    Google Scholar 

  7. 7.

    Brouzgou A, Tsiakaras P (2015) Electrocatalysts for Glucose Electrooxidation Reaction: A Review. Top Catal 58:1311–1327

    CAS  Google Scholar 

  8. 8.

    Zhu H, Li L, Zhou W, Shao Z, Chen X (2016) Advances in non-enzymatic glucose sensors based on metal oxides. J Mater Chem B 4:7333–7349

    PubMed  CAS  Google Scholar 

  9. 9.

    Heller A, Feldman B (2010) Electrochemistry in diabetes management. Acc Chem Res 43:963–973

    PubMed  CAS  Google Scholar 

  10. 10.

    Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502

    CAS  Google Scholar 

  11. 11.

    Tsai T-W, Heckert G, Neves LF, Tan Y, Kao D-Y, Harrison RG, Resasco DE, Schmidtke DW (2009) Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal Chem 81(19):7917–7925

    PubMed  CAS  Google Scholar 

  12. 12.

    You T, Niwa O, Chen Z, Hayashi K, Tomita M, Hirono S (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem 75:5191–5196

    PubMed  CAS  Google Scholar 

  13. 13.

    Chang G, Shu H, Ji K, Oyama M, Liu X, He Y (2014) Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Appl Surf Sci 288:524–529

    CAS  Google Scholar 

  14. 14.

    Cherevko S, Chung C-H (2009) Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sensors Actuators B Chem 142:216–223

    CAS  Google Scholar 

  15. 15.

    Park S, Chung TD, Kim HC (2003) Nonenzymatic glucose detection using mesoporous platinum. Anal Chem 75:3046–3049

    PubMed  CAS  Google Scholar 

  16. 16.

    Ye J-S, Liu Z-T, Lai C-C, Lo C-T, Lee C-L (2016) Diameter effect of electrospun carbon fiber support for the catalysis of Pt nanoparticles in glucose oxidation. Chem Eng J 283:304–312

    CAS  Google Scholar 

  17. 17.

    Zhang H, Toshima N (2011) Preparation of novel Au/Pt/Ag trimetallic nanoparticles and their high catalytic activity for aerobic glucose oxidation. Appl Catal A Gen 400:9–13

    CAS  Google Scholar 

  18. 18.

    Shim K, Lee W-C, Park M-S, Shahabuddin M, Yamauchi Y, Hossain MSA, Shim Y-B, Kim JH (2019) Au decorated core-shell structured Au@Pt for the glucose oxidation reaction. Sensors Actuators B Chem 278:88–96

    CAS  Google Scholar 

  19. 19.

    Xu Z-Q, Ling A-X, Liu J, Quan X-G, Wang H-Y, Kong Q-S, Kong F-D (2015) Hierarchically structured Ir@Pt/C composite as an efficient catalyst for glucose electro-oxidation. Catal Commun 69:114–118

    CAS  Google Scholar 

  20. 20.

    Brouzgou A, Lo Vecchio C, Baglio V, Aricò AS, Liang Z-X, Demin A, Tsiakaras P (2019) Glucose electrooxidation reaction in presence of dopamine and uric acid over ketjenblack carbon supported PdCo electrocatalyst. J Electroanal Chem 855:113610

    CAS  Google Scholar 

  21. 21.

    Dai H, Cao P, Chen D, Li Y, Wang N, Ma H, Lin M (2018) Ni-Co-S/PPy core-shell nanohybrid on nickel foam as a non-enzymatic electrochemical glucose sensor. Synth Met 235:97–102

    CAS  Google Scholar 

  22. 22.

    Zhang X, Xu Y, Ye B (2018) An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J Alloys Compd 767:651–656

    CAS  Google Scholar 

  23. 23.

    Fang L, Zhu Q, Cai Y, Liang B, Ye X (2019) 3D porous structured polyaniline/reduced graphene oxide/copper oxide decorated electrode for high performance nonenzymatic glucose detection. J Electroanal Chem 841:1–9

    CAS  Google Scholar 

  24. 24.

    Guo M, Wei L, Qu Y, Zeng F, Yuan C (2018) One-step electrochemical exfoliation of nanoparticles-assembled NiO nanosheets for non-enzymatic glucose biosensor. Mater Lett 213:174–177

    CAS  Google Scholar 

  25. 25.

    Sem PK, Midya JK, Bysakh S, Pal B (2017) Kinetic and mechanistic studies on the oxidation of d-glucose by MnO2 nanoparticles. Effect of microheterogeneous environments of CTAB, triton X-100 and tween 20. Mol Catal 440:75–86

    Google Scholar 

  26. 26.

    Dharuman V, Pillai KC (2006) RuO2 electrode surface effects in electrocatalytic oxidation of glucose. J Solid State Electrochem 10:967–979

    CAS  Google Scholar 

  27. 27.

    Girardi L, Bardini L, Michieli N, Kalinic B, Maurizio C, Rizzi G, Mattei G (2019) Co3O4 nanopetals on Si as photoanodes for the oxidation of organics. Surfaces 2:41–53

    CAS  Google Scholar 

  28. 28.

    Hamdani M, Singh RN, Chartier P (2010) Co3O4 and Co-based spinel oxides bifunctional oxygen electrodes. Int J Electrochem Sci 5:556–577

    CAS  Google Scholar 

  29. 29.

    Birkholz M (2005) Thin Film Analysis by X-Ray Scattering. Wiley, Weinheim

    Google Scholar 

  30. 30.

    Rashad M, Rüsing M, Berth G, Lischka K, Pawlis A (2013) CuO and Co3O4 nanoparticles: synthesis, characterizations, and Raman spectroscopy. J Nanomater 2013:714853

    Google Scholar 

  31. 31.

    Jirátová K, Perekrestov R, Dvořáková M, Balabánová J, Topka P, Koštejn M, Olejníček J, Čada M, Hubička Z, Kovanda F (2019) Cobalt oxide catalysts in the form of thin films prepared by magnetron sputtering on stainless-steel meshes: performance in ethanol oxidation. Catalysts 9(10):806

    Google Scholar 

  32. 32.

    Tang C-W, Wang C-B, Chien S-H (2008) Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim Acta 473:68–73

    CAS  Google Scholar 

  33. 33.

    Hadjiev VG, Iliev MN, Vergilov IV (1988) The Raman spectra of Co3O4. J Phys C Solid State Phys 21:L199–L201

    Google Scholar 

  34. 34.

    Wolf ID (1996) Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond Sci Technol 11:139–154

    Google Scholar 

  35. 35.

    Mane AU, Shivashankar SA (2003) MOCVD of cobalt oxide thin films: dependence of growth, microstructure, and optical properties on the source of oxidation. J Cryst Growth 254:368–377

    CAS  Google Scholar 

  36. 36.

    Petrov I, Barna PB, Hultman L, Greene JE (2003) Microstructural evolution during film growth. J Vac Sci Technol A Vacuum, Surfaces, Film 21:S117–S128

    CAS  Google Scholar 

  37. 37.

    Mahieu S, Ghekiere P, Depla D, Gryse RD (2006) Biaxial alignment in sputter deposited thin films. Thin Solid Films 515:1229–1249

    CAS  Google Scholar 

  38. 38.

    Pantaroto HN, Ricomini-Filho AP, Bertolini MM, Silva JHD, Neto NFA, Sukotjo C, Rangel EC, Barão VAR (2018) Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm. Dent Mater 34:e182–e195

    PubMed  CAS  Google Scholar 

  39. 39.

    Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84:685

    CAS  Google Scholar 

  40. 40.

    Li W, Wang X, Ma Q, Wang F, Chu X-s, Wang X-c, Wang C-y (2021) CdS@h-BN heterointerface construction on reduced graphene oxide nanosheets for hydrogen production. Appl Catal B-Environ 284:119688

    CAS  Google Scholar 

  41. 41.

    Blakemore JD, Gray HB, Winkler JR, Müller AM (2013) Co3O4 Nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal 3:2497–2500

    CAS  Google Scholar 

  42. 42.

    Kupfer B, Majhi K, Keller DA, Bouhadana Y, Rühle S, Barad HN, Anderson AY, Zaban A (2015) Thin film Co3O4/TiO2 heterojunction solar cells. Adv Energy Mater 5(1):1401007

    Google Scholar 

  43. 43.

    Cook JG, van der Meer MP (1986) The optical properties of sputtered Co3O4 films. Thin Solid Films 144:165–176

    CAS  Google Scholar 

  44. 44.

    Zhu X, Wang J, Nguyen D, Thomas J, Norwood RA, Peyghambarian N (2012) Linear and nonlinear optical properties of Co3O4 nanoparticle-doped polyvinyl-alcohol thin films. Opt Mater Express 2:103–110

    CAS  Google Scholar 

  45. 45.

    Zhang X, Guo P, Pan Q, Shi K, Zhang G (2017) Novel p-n heterojunction Co3O4/AlOOH composites materials for gas sensing at room temperature. J Alloys Compd 727:514–521

    CAS  Google Scholar 

  46. 46.

    Patel M, Park W-H, Ray A, Kim J, Lee J-H (2017) Photoelectrocatalytic sea water splitting using Kirkendall diffusion grown functional Co3O4 film. Sol Energy Mater Sol Cells 171:267–274

    CAS  Google Scholar 

  47. 47.

    Arciga-Duran E, Meas Y, Perez-Bueno JJ, Ballesteros JC, Trejo G (2018) Electrochemical synthesis of Co3O4-x films for their application as oxygen evolution reaction electrocatalysts: role of oxygen vacancies. J Electrochem Soc 165:H3178–H3186

    CAS  Google Scholar 

  48. 48.

    Dominguez-Benetton X, Sevda S, Vanbroekhoven K, Pant D (2012) The accurate use of impedance analysis for the study of microbial electrochemical systems. Chem Soc Rev 41:7228–7246

    PubMed  CAS  Google Scholar 

  49. 49.

    Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85:3561–3569

    PubMed  CAS  Google Scholar 

  50. 50.

    Casella IG, Gatta M (2002) Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. J Electroanal Chem 534:31–38

    CAS  Google Scholar 

  51. 51.

    Gao Y, Chen S, Cao D, Wang G, Yin J (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195:1757–1760

    CAS  Google Scholar 

  52. 52.

    Xia X-H, Tu J-P, Mai Y-J, Wang X-L, Gu C-D, Zhao X-B (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21:9319–9325

    CAS  Google Scholar 

  53. 53.

    Nkeng P, Poillerat G, Koenig JF, Charfier P, Lefez B, Lopitaux J, Lenglet M (1995) Characterization of spinel-type cobalt and nickel oxide thin films by x-ray near grazing diffraction, transmission and reflectance spectroscopies, and cyclic voltammetry. J Electrochem Soc 142(6):1777–1783

    CAS  Google Scholar 

  54. 54.

    Chen T, Li X, Qiu C, Zhu W, Ma H, Chen S, Meng O (2014) Electrochemical sensing of glucose by carbon cloth-supported Co3O4/PbO2 core-shell nanorod arrays. Biosens Bioelectron 53:200–206

    PubMed  CAS  Google Scholar 

  55. 55.

    Pelissari MRS, Archela E, Tarley CRT, Dall’Antonia LH (2019) Ascorbic acid electrocatalytic activity in different electrolyte solutions using electrodeposited Co(OH)2. Ionics 25:1911–1920

    Google Scholar 

  56. 56.

    Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    PubMed  Google Scholar 

  57. 57.

    Zheng Y, Li P, Li H, Chen S (2014) Controllable growth of cobalt oxide nanoparticles on reduced graphene oxide and its application for highly sensitive glucose sensor. Int J Electrochem Sci 9:7369–7381

    Google Scholar 

  58. 58.

    Bard AJ, Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications. Wiley, New York

    Google Scholar 

  59. 59.

    Ye J-S, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu F-S (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem Commun 6:66–70

    CAS  Google Scholar 

  60. 60.

    Danaee I, Jafarian M, Forouzandeh F, Gobal F (2012) Kinetic studies of glucose electrocatalytic oxidation on GC/Ni electrode. Int J Chem Kinet 44:712–721

    CAS  Google Scholar 

  61. 61.

    Ci S, Mao S, Huang T, Wen Z, Steeber DA, Chen J (2014) Enzymeless glucose detection based on CoO/graphene microsphere hybrids. Electroanalysis 26:1326–1334

    CAS  Google Scholar 

  62. 62.

    Zhang Y, Xu F, Sun Y, Shi Y, Wen Z, Li Z (2011) Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21:16949–16954

    CAS  Google Scholar 

  63. 63.

    Joo S, Park S, Chung TD, Kim HC (2007) Integration of a nanoporous platinum thin film into a microfluidic system for non-enzymatic electrochemical glucose sensing. Anal Sci 23:277–281

    PubMed  Google Scholar 

  64. 64.

    Zhang X, Wang G, Zhang W, Wei Y, Fang B (2009) Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens Bioelectron 24:3395–3398

    PubMed  CAS  Google Scholar 

  65. 65.

    Jongprateep O, Techapiesarnchareonkij R, Surawathanawises K, Saisriyoot M, Kamchaddaskorn A, Wangkhumphai K, Puranasamriddhi R, Sato N (2018) Solution combustion route for synthesizing Co3O4/MWCNTs and Mn2O3/MWCNTs electrodes as glucose sensors. Mater Today-Proc 5:10946–10953

    CAS  Google Scholar 

  66. 66.

    Cui H-F, Ye J-S, Zhang W-D, Li C-M, Luong JHT, Sheu F-S (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175–183

    PubMed  CAS  Google Scholar 

  67. 67.

    Chen J, Zhang W-D, Ye J-S (2008) Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem Commun 10:1268–1271

    CAS  Google Scholar 

  68. 68.

    Dong Q, Wang X, Willis WS, Song D, Huang Y, Zhao J, Li B, Lei Y (2019) Nitrogen-doped hollow Co3O4 nanofibers for both solid-state pH sensing and improved non-enzymatic glucose sensing. Electroanalysis 31:678–687

    CAS  Google Scholar 

Download references


This study was financially supported by CNPq (process 406459/2016-9), FINEP (01.13.0328.00), FAPESP (2017/18916-2), and LNNano (DRXP-25618).

Author information



Corresponding author

Correspondence to Marcelo Rodrigues da Silva Pelissari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


(DOC 4836 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neto, N.F.A., de Jesus Pereira, A.L., Leite, D.M.G. et al. Evaluation of ITO/TiO2/Co3O4 as a non-enzymatic heterojunction electrode to glucose electrooxidation. Ionics 27, 1597–1609 (2021). https://doi.org/10.1007/s11581-021-03933-1

Download citation


  • ITO/TIO2/Co3O4
  • Reactive magnetron sputtering (RMS)
  • Heterojunction
  • Non-enzymatic
  • Glucose electrooxidation