Synthesis and electrochemical properties of ZnFe2O4/C as novel anode material for lithium ion battery

Abstract

The ZnFe2O4/C nanofibers were synthesized by electrospinning method combined with heat treatment. The crystal structure, elemental valence, and morphology of expected compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and scanning electron microscopy (SEM) techniques, respectively. The electrochemical performances of ZnFe2O4/C were tested by battery comprehensive testing system. The test results showed that ZnFe2O4/C owned high specific capacities under different current densities. At current density of 0.2 A g−1, the specific capacity was 624.5 mAh g−1 after 100 cycles. And when current density was increased to 0.5 A g−1, its capacity could maintain at 479.3 mAh g−1 after 500 cycles. The ZnFe2O4/C exhibited excellent cycle stability, too. So the ZnFe2O4/C composite is a potential anode material for lithium ion battery application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Song J, Kim H, Jae W, Kim T, Futalan CM, Kim J (2020) Porous ZnO/C microspheres prepared with maleopimaric acid as an anode material for lithium-ion batteries. Carbon 165:55–66

    CAS  Article  Google Scholar 

  2. 2.

    Jin S, Wang C (2014) Synthesis and first investigation of excellent lithium storage performances of Fe2GeO4/reduced graphene oxide nanocomposite. Nano Energy 7:63–71

    CAS  Article  Google Scholar 

  3. 3.

    Yabuuchi N, Nakayama M, Takeuchi M, Komaba S, Yu H, Mukai T, Shiiba H, Sato K, Kobayashi Y, Nakao A, Yonemura M, Yamanaka K, Mitsuhara K, Ohta T (2016) Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat Commun 7:13816

    Article  Google Scholar 

  4. 4.

    Liu W, Yuanyuan F, Li Y, Chen S, Song Y, Wang L (2019) Three-dimensional carbon foam surrounded by carbon nanotubes and co-Co3O4 nanoparticles for stable lithium-ion batteries. Composites Part B 163:464–470

    CAS  Article  Google Scholar 

  5. 5.

    Huang R, Li Y, Liu W, Song Y, Wang L (2020) N-doped honeycomb-like carbon networks loaded with ultra-fine Fe2O3 nanoparticles for lithium-ion batteries. Ceram Int 46:17478–17485

    CAS  Article  Google Scholar 

  6. 6.

    Xiao F, Chen X, Zhang J, Huang C, Hu T, Hong B, Xu J (2020) Large-scale production of holey graphite as high-rate anode for lithium ion batteries. J Energy Chem 48:122–127

    Article  Google Scholar 

  7. 7.

    Angamuthu G, Rengarajan V (2020) MoS2 mediated nitrogen enriched composite material for high and fast Li-ion storage. Appl Surf Sci 525:146437

    CAS  Article  Google Scholar 

  8. 8.

    Yue L, Zhao H, Wu Z, Liang J, Lu S, Chen G, Gao S, Zhong B, Guo X, Sun X (2020) Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J Mater Chem A 8:11493–11510

    CAS  Article  Google Scholar 

  9. 9.

    Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415

    CAS  Article  Google Scholar 

  10. 10.

    Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater 16:2393–2397

    CAS  Article  Google Scholar 

  11. 11.

    Qiao L, Wang X, Qiao L, Sun X, Li X, Zheng Y, He D (2013) Single electrospun porous NiO–ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries. Nanoscale 5:3037–3042

    CAS  Article  Google Scholar 

  12. 12.

    Ren P, Wang Z, Liu B, Lu Y, Jin Z, Zhang L, Lu L, Li X, Wang C (2020) Highly dispersible hollow nanospheres organized by ultra-small ZnFe2O4 subunits with enhanced lithium storage properties. J Alloys Compd 812:152014

    CAS  Article  Google Scholar 

  13. 13.

    Wu J, Song Y, Zhou R, Chen S, Li Z, Hou H, Wang L (2015) Zn-Fe-ZIF-derived porous ZnFe2O4/C@NCNTs nanomposites as anode for lithium-ion batteries. J Mater Chem A 3:7793–7798

    CAS  Article  Google Scholar 

  14. 14.

    Wang J, Yang G, Wang L, Yan W (2016) Fabrication of the ZnFe2O4 fiber-in-tube and tubular mesoporous nanostructures via single-spinneret electrospinning: characterization, mechanism and performance as anodes for Li-ion batteries. Electrochim Acta 222:1176–1185

    CAS  Article  Google Scholar 

  15. 15.

    Wu L, Wu T, Mao M, Zhang M, Wang T (2016) Electrospinning synthesis of Ni°, Fe° codoped ultrafine-ZnFe2O4/C nanofibers and their properties for lithium ion storage. Electrochim Acta 194:357–366

    CAS  Article  Google Scholar 

  16. 16.

    Jiang Y, Chen S, Daobin M, Zhao Z, Li C, Ding Z, Xie C, Wu F (2018) Flexible TiO2/SiO2/C film anodes for lithium-ion batteries. ChemSusChem 11:2040–2044

    CAS  Article  Google Scholar 

  17. 17.

    Lin W, Moon K-S, Zhang S, Ding Y, Shang J, Chen M, Wong C-p (2010) Microwave makes carbon nanotubes less defective. ACS Nano 4:1716–1722

    CAS  Article  Google Scholar 

  18. 18.

    Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S (2013) Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Adv Energy Mater 3:513–523

    CAS  Article  Google Scholar 

  19. 19.

    Yue H, yuehongyun QW, Shi Z, Ma C, Ding Y, Huo N, Zhang J, Yang S (2015) Porous hierarchical nitrogen-doped carbon coated ZnFe2O4 composites as high performance anode materials for lithium ion batteries. ElectrochimicaActa 180:622–628

    CAS  Article  Google Scholar 

  20. 20.

    Yu W, Jin Y, Zhang R, Ji M (2017) Facile synthesis of ZnFe2O4–graphene aerogels composites as high-performance anode materials for lithium ion batteries. Appl Surf Sci 413:50–55

    Article  Google Scholar 

  21. 21.

    Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ(M), Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    CAS  Article  Google Scholar 

  22. 22.

    Hao S, Zhang B, Ball S, Wu J, Srinivasan M, Huang Y (2016) Phase transition of hollow-porous α-Fe2O3 microspheres based anodes for lithium ion batteries during high rate cycling. J Mater Chem A 4:16569–16575

    CAS  Article  Google Scholar 

  23. 23.

    Li Y, Yuanyuan F, Chen S, Huang Z, Wang L, Song Y (2019) Porous Fe2O3/Fe3O4@carbon octahedron arrayed on three-dimensional graphene foam for lithium-ion battery. Composites Part B 171:130–137

    CAS  Article  Google Scholar 

  24. 24.

    Bai J, Chen X, Olsson E, Wu H, Wang S, Cai Q, Feng C (2020) Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries. J Mater Sci Technol 50:92–102

    Google Scholar 

  25. 25.

    Liu Y, Yi-Jing G, Luo G-Y, Chen Z-L, Wu F-Z, Dai X-Y, Mai Y, Li J-Q (2020) Ni-doped LiFePO4/C as high-performance cathode composites for Li-ion batteries. Ceram Int 46:14857–14863

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC−U1903217).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guangxue Zhang or Chuanqi Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Zhang, Z., Ma, Z. et al. Synthesis and electrochemical properties of ZnFe2O4/C as novel anode material for lithium ion battery. Ionics (2021). https://doi.org/10.1007/s11581-021-03931-3

Download citation

Keywords

  • Electrospinning
  • ZnFe2O4/C composite
  • Electrochemical performance
  • Anode material
  • Lithium ion batteries