Oxygen permeation and oxidative coupling of methane with NiFe2O4-Gd0.1Ce0.9O2-δ composite membrane

Abstract

Oxygen permeability and oxidative coupling of methane (OCM) characteristics of a 30 vol.% NiFe2O4-70 vol.% Gd0.1Ce0.9O2-δ (NFO-GDC) composite membrane were systematically investigated by varying operational conditions for oxygen permeation and OCM experiments. The NFO-GDC membrane showed the maximum oxygen permeation flux of 2.24 mL∙cm−2∙min−1 under an Air/He gradient at 900 °C, and flux increased with increasing oxygen partial pressure gradient in the order He < CH4 < H2. The maximum OCM yield and C2H4/C2H6 ratio were observed at 900 °C and for CH4 flowing at 12.5 mL∙min-1, respectively, and the yield and ratio both increased with increasing temperature in the range 700–900 °C. The overall coupling yield was notably enhanced by applying a Mn/Na2WO4/SiO2 catalyst to the permeate side of the composite membrane. The NFO-GDC membrane with the Mn/Na2WO4/SiO2 catalyst exhibited the maximum yield and a C2H4/C2H6 ratio of 8.6% and 3.21, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Bouwmeester HJM (2003) Dense ceramic membranes for methane conversion. Catal Today 82:141–150. https://doi.org/10.1016/S0920-5861(03)00222-0

    CAS  Article  Google Scholar 

  2. 2.

    Wei Y, Yang W, Caro J, Wang H (2013) Dense ceramic oxygen permeable membranes and catalytic membrane reactors. Chem Eng J 220:185–203. https://doi.org/10.1016/j.cej.2013.01.048

    CAS  Article  Google Scholar 

  3. 3.

    Arratibel Plazaola A, Cruellas Labella A, Liu Y, Badiola Porras N, Pacheco Tanaka D, Sint Annaland M, Gallucci F (2019) Mixed ionic-electronic conducting membranes (MIEC) for their application in membrane reactors: a review. Processes 7:128. https://doi.org/10.3390/pr7030128

    CAS  Article  Google Scholar 

  4. 4.

    Dong X, Jin W, Xu N, Li K (2011) Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications. Chem Commun 47:10886–10902. https://doi.org/10.1039/c1cc13001c

    CAS  Article  Google Scholar 

  5. 5.

    Liu S, Tan X, Li K, Hughes R (2001) Methane coupling using catalytic membrane reactors. Catal Rev Sci Eng 43:147–198. https://doi.org/10.1081/CR-100104388

    CAS  Article  Google Scholar 

  6. 6.

    Ding W, Chen Y, Fu X (1994) Oxidative coupling of methane over Ce4+-doped Ba3WO6 catalysts: investigation on oxygen species responsible for catalytic performance. Catal Lett 23:69–78. https://doi.org/10.1007/BF00812132

    CAS  Article  Google Scholar 

  7. 7.

    Ferreira VJ, Tavares P, Figueiredo JL, Faria JL (2013) Ce-doped La2O3 based catalyst for the oxidative coupling of methane. Catal Commun 42:50–53. https://doi.org/10.1016/j.catcom.2013.07.035

    CAS  Article  Google Scholar 

  8. 8.

    Gellings PJ, Bouwmeester HJM (1992) Ion and mixed conducting oxides as catalysts. Catal Today 12:1–101. https://doi.org/10.1016/0920-5861(92)80046-P

    CAS  Article  Google Scholar 

  9. 9.

    ten Elshof JE, Bouwmeester HJM, Verweij H (1995) Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor. Appl Catal A Gen 130:195–212. https://doi.org/10.1016/0926-860X(95)00098-4

    Article  Google Scholar 

  10. 10.

    Tan X, Pang Z, Gu Z, Liu S (2007) Catalytic perovskite hollow fibre membrane reactors for methane oxidative coupling. J Membr Sci 302:109–114. https://doi.org/10.1016/j.memsci.2007.06.033

    CAS  Article  Google Scholar 

  11. 11.

    Othman NH, Wu Z, Li K (2015) An oxygen permeable membrane microreactor with an in-situ deposited Bi1.5Y0.3Sm0.2O3-δ catalyst for oxidative coupling of methane. J Membr Sci 488:182–193. https://doi.org/10.1016/j.memsci.2015.04.027

    CAS  Article  Google Scholar 

  12. 12.

    Tan X, Li K (2006) Oxidative coupling of methane in a perovskite hollow-fiber membrane reactor. Ind Eng Chem Res 45:142–149. https://doi.org/10.1021/ie0506320

    CAS  Article  Google Scholar 

  13. 13.

    Zeng Y, Lin YS, Swartz SL (1998) Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. J Membr Sci 150:87–98. https://doi.org/10.1016/S0376-7388(98)00182-3

    CAS  Article  Google Scholar 

  14. 14.

    Xu SJ, Thomson WJ (1997) Perovskite-type oxide membranes for the oxidative coupling of methane. AICHE J 43:2731–2740. https://doi.org/10.1002/aic.690431319

    CAS  Article  Google Scholar 

  15. 15.

    Matras D, Vamvakeros A, Jacques S et al (2020) In situ X-ray diffraction computed tomography studies examining the thermal and chemical stabilities of working Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes during oxidative coupling of methane. Phys Chem Chem Phys 22:18964–18975. https://doi.org/10.1039/d0cp02144j

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Olivier L, Haag S, Mirodatos C, van Veen AC (2009) Oxidative coupling of methane using catalyst modified dense perovskite membrane reactors. Catal Today 142:34–41. https://doi.org/10.1016/j.cattod.2009.01.009

    CAS  Article  Google Scholar 

  17. 17.

    Cao Z, Jiang H, Luo H, Baumann S, Meulenberg WA, Voss H, Caro J (2012) Simultaneous overcome of the equilibrium limitations in BSCF oxygen-permeable membrane reactors: water splitting and methane coupling. Catal Today 193:2–7. https://doi.org/10.1016/j.cattod.2011.12.018

    CAS  Article  Google Scholar 

  18. 18.

    Wang H, Cong Y, Yang W (2005) Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3-δ tubular membrane reactors. Catal Today 104:160–167. https://doi.org/10.1016/j.cattod.2005.03.079

    CAS  Article  Google Scholar 

  19. 19.

    Bhatia S, Thien CY, Mohamed AR (2009) Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors. Chem Eng J 148:525–532. https://doi.org/10.1016/j.cej.2009.01.008

    CAS  Article  Google Scholar 

  20. 20.

    Czuprat O, Schiestel T, Voss H, Caro J (2010) Oxidative coupling of methane in a BCFZ perovskite hollow fiber membrane reactor. Ind Eng Chem Res 49:10230–10236. https://doi.org/10.1021/ie100282g

    CAS  Article  Google Scholar 

  21. 21.

    Yoo C-Y, Yun DS, Park S-Y, Park J, Joo JH, Park H, Kwak M, Yu JH (2016) Investigation of electrochemical properties of model lanthanum strontium cobalt ferrite-based cathodes for proton ceramic fuel cells. Electrocatalysis 7:280–286. https://doi.org/10.1007/s12678-016-0306-1

    CAS  Article  Google Scholar 

  22. 22.

    Yoo C-Y (2012) Phase stability and oxygen transport properties of mixed ionic-electronic conducting oxides. Dissertation, University of Twente. https://doi.org/10.3990/1.9789036533942

  23. 23.

    Fang SM, Yoo C-Y, Bouwmeester HJM (2011) Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes. Solid State Ionics 195:1–6. https://doi.org/10.1016/j.ssi.2011.05.022

    CAS  Article  Google Scholar 

  24. 24.

    Luo H, Jiang H, Efimov K, Caro J, Wang H (2011) Influence of the preparation methods on the microstructure and oxygen permeability of a CO2-stable dual phase membrane. AICHE J 57:2738–2745. https://doi.org/10.1002/aic.12488

    CAS  Article  Google Scholar 

  25. 25.

    Luo H, Efimov K, Jiang H, Feldhoff A, Wang H, Caro J (2011) CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angew Chem Int Ed 50:759–763. https://doi.org/10.1002/anie.201003723

    CAS  Article  Google Scholar 

  26. 26.

    Balaguer M, García-Fayos J, Solís C, Serra JM (2013) Fast oxygen separation through SO2- and CO2-stable dual-phase membrane based on NiFe2O4-Ce 0.8Tb0.2O2-δ. Chem Mater 25:4986–4993. https://doi.org/10.1021/cm4034963

    CAS  Article  Google Scholar 

  27. 27.

    Garcia-Fayos J, Vert VB, Balaguer M, Solís C, Gaudillere C, Serra JM (2015) Oxygen transport membranes in a biomass/coal combined strategy for reducing CO2 emissions: permeation study of selected membranes under different CO2-rich atmospheres. Catal Today 257:221–228. https://doi.org/10.1016/j.cattod.2015.04.019

    CAS  Article  Google Scholar 

  28. 28.

    Takamura H, Kobayashi T, Kasahara T, Kamegawa A, Okada M (2006) Oxygen permeation and methane reforming properties of ceria-based composite membranes. J Alloys Compd 408-412:1084–1089. https://doi.org/10.1016/j.jallcom.2004.12.139

    CAS  Article  Google Scholar 

  29. 29.

    Takamura H, Kobayashi T, Kamegawa A, Okada M (2004) Oxygen permeation and methane conversion properties of ceria-based composite membranes prepared by tape-casting technique. In: Fuel Cell Science, Engineering and Technology - 2004. American Society of Mechanical Engineers, pp 213–217

  30. 30.

    Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 192:55–69. https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  31. 31.

    Zhu X, Yang W (2008) Composite membrane based on ionic conductor and mixed conductor for oxygen permeation. AICHE J 54:665–672. https://doi.org/10.1002/aic.11410

    CAS  Article  Google Scholar 

  32. 32.

    Tan X, Shi L, Hao G, Meng B, Liu S (2012) La0.7Sr0.3FeO3-δ perovskite hollow fiber membranes for oxygen permeation and methane conversion. Sep Purif Technol 96:89–97. https://doi.org/10.1016/j.seppur.2012.05.012

    CAS  Article  Google Scholar 

  33. 33.

    Manning PS, Sirman JD, Kilner JA (1996) Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure. Solid State Ionics 93:125–132. https://doi.org/10.1016/s0167-2738(96)00514-0

    CAS  Article  Google Scholar 

  34. 34.

    Meng B, Zhang H, Qin J, Tan X, Ran R, Liu S (2015) The catalytic effects of La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3 perovskite and its hollow fibre membrane for air separation and methane conversion reactions. Sep Purif Technol 147:406–413. https://doi.org/10.1016/j.seppur.2015.01.039

    CAS  Article  Google Scholar 

  35. 35.

    Baumann S, Serra JM, Lobera MP, Escolástico S, Schulze-Küppers F, Meulenberg WA (2011) Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes. J Membr Sci 377:198–205. https://doi.org/10.1016/j.memsci.2011.04.050

    CAS  Article  Google Scholar 

  36. 36.

    Schulze-Küppers F, Baumann S, Meulenberg WA, Stöver D, Buchkremer HP (2013) Manufacturing and performance of advanced supported Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) oxygen transport membranes. J Membr Sci 433:121–125. https://doi.org/10.1016/j.memsci.2013.01.028

    CAS  Article  Google Scholar 

  37. 37.

    Schulze-Küppers F, Baumann S, Meulenberg WA, Bouwmeester HJM (2020) Influence of support layer resistance on oxygen fluxes through asymmetric membranes based on perovskite-type oxides SrTi1-xFexO3-δ. J Membr Sci 596:117704. https://doi.org/10.1016/j.memsci.2019.117704

    CAS  Article  Google Scholar 

  38. 38.

    Viitanen MM, Welzenis RGV, Brongersma HH, Van Berkel FPF (2002) Silica poisoning of oxygen membranes. Solid State Ionics 150:223–228. https://doi.org/10.1016/S0167-2738(02)00455-1

    CAS  Article  Google Scholar 

  39. 39.

    Bae JM, Steele BCH (1998) Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes I. Role of SiO2. Solid State Ionics 106:247–253. https://doi.org/10.1016/s0167-2738(97)00428-1

    CAS  Article  Google Scholar 

  40. 40.

    Lakshtanov DL, Sinogeikin SV, Bass JD (2007) High-temperature phase transitions and elasticity of silica polymorphs. Phys Chem Miner 34:11–22. https://doi.org/10.1007/s00269-006-0113-y

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciated it using the Convergence Research Laboratory (established by the MNU Innovation Support Project in 2020) to conduct this research.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1F1A1048303). This work supported by the Technology Innovation Program (No. 20012971 and No. 20004963) funded by the Ministry of Trade, industry & Energy (MOTIE), Republic of Korea.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kyubock Lee or Chung-Yul Yoo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 211 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.A., Yu, J.H., Yoon, H. et al. Oxygen permeation and oxidative coupling of methane with NiFe2O4-Gd0.1Ce0.9O2-δ composite membrane. Ionics (2021). https://doi.org/10.1007/s11581-021-03926-0

Download citation

Keywords

  • Composite
  • Fluorites
  • Spinels
  • Oxygen permeation
  • Oxidative coupling of methane