Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage

Abstract

Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reduction in its capacitance. To counter the same, porous carbon and Sn were chosen as cushion layers for Bi. As a result, Bi and Sn embedded in ZIF-8-derived three-dimensional porous carbon (Bi/Sn@3D-C) composite was specifically designed as an electrode material for Li-ion and Na-ion storage. The electrochemical performance of Bi/Sn@3D-C, Bi@3D-C, and Sn@3D-C is compared. The discharge capacity of Bi/Sn@3D-C remains 632.0 mA h g−1 (at a rate of 0.1 A g−1) after 120 cycles for Li-ion store, and after 50 cycles, the specific capacity of the electrode reaches 291.5 mA h g−1 in sodium-ion battery.

Graphical abstract

Bi, Sn, and porous carbon composite—Bi/Sn@3D-C was designed as anode material for LIBs and SIBs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Huang HW, Cui J, Liu GX, Bi R, Zhang L (2019) Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 13:3448–3456

    CAS  Article  Google Scholar 

  2. 2.

    Zhao Y, Li XF, Yan B, Xiong DB, Li DJ, Lawes S, Sun XL (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6:1502175

    Article  Google Scholar 

  3. 3.

    Hou HS, Banks CE, Jing MJ, Zhang Y, Ji XB (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866

    CAS  Article  Google Scholar 

  4. 4.

    Chen L, Fiore M, Wang JE, Ruffo R, Kim DK, Longoni G (2018) Readiness level of sodium-ion battery technology: a materials review. Adv Sustain Syst 2:1700153

    Article  Google Scholar 

  5. 5.

    Yang LY, Xie JR, Abliz A, Liu J, Wu R, Tang SS, Wang SY, Wu LL, Zhu YY (2019) Hollow paramecium-like SnO2/TiO2 heterostructure designed for sodium storage. J Solid State Chem 274:176–181

    CAS  Article  Google Scholar 

  6. 6.

    Guo YY, Zeng XQ, Zhang Y, Dai ZF, Fan HS, Huang Y, Zhang WN, Zhang H, Lu J, Huo FW, Yan QY (2017) Sn Nanoparticles encapsulated in 3D nanoporous carbon derived from a metal−organic framework for anode material in lithium-ion batteries. ACS Appl Mater Interfaces 9:17172–17177

    CAS  Article  Google Scholar 

  7. 7.

    Wang WY, Du ZR, Qian JC, Chen F (2020) Three-dimensional porous Sn/NC spheres with outstanding properties for lithium ion battery. Mater Lett 259:126827

    CAS  Article  Google Scholar 

  8. 8.

    Kravchyk K, Protesescu L, Bodnarchuk MI, Krumeich F, Yarema M, Walter M, Guntlin C, Kovalenko MV (2013) Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for highperformance li-ion battery anodes. J Am Chem Soc 135:4199–4202

    CAS  Article  Google Scholar 

  9. 9.

    Han J, Kong D, Lv W, Tang DM, Han D, Zhang C, Liu D, Xiao Z, Zhang X, Xiao J, He X, Hsia FC, Zhang C, Tao Y, Golberg D, Kang F, Zhi L, Yang QH (2018) Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat Commun 9:402

    Article  Google Scholar 

  10. 10.

    Wang X, Lv L, Cheng Z, Gao J, Dong L, Hu C, Qu L (2016) High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li-ion batteries. Adv Energy Mater 6:1502100

    Article  Google Scholar 

  11. 11.

    Kalisvaart WP, Olsen BC, Luber EJ, Buriak JM (2019) Sb−Si alloys, multilayers for sodium-ion battery anodes. ACS Appl Energy Mater 2:2205–2213

    CAS  Article  Google Scholar 

  12. 12.

    Huang JQ, Lin XY, Tan H, Zhang B (2018) Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater 2:1703496

    Article  Google Scholar 

  13. 13.

    Shi XL, Zhang JS, Yao QQ, Wang R, Wu HF, Zhao Y, Guan LH (2020) A self-template approach to synthesize multicore-shell Bi@N-doped carbon nanosheets with interior void space for high-rate and ultrastable potassium storage. J Mater Chem A 8:8002–8009

    CAS  Article  Google Scholar 

  14. 14.

    Hong WW, Wang A, Li L, Qiu TY, Li JY, Jiang YL, Zou GQ, Peng HJ, Hou HS, Ji XB (2020) Bi dots confined by functional carbon as high-performance anode for lithium ion batteries. Adv Funct Mater 2000756

  15. 15.

    Yuan HC, Jin YQ, Chen XN, Lan JL, Yu YH, Yang XP (2019) Large-scale fabrication of egg-carton-inspired Bi/C composite toward high volumetric capacity and long-life lithium ion batteries. ACS Sustain Chem Eng 7:6033–6042

    CAS  Article  Google Scholar 

  16. 16.

    Zhong YY, Li B, Li SM, Xu SY, Pan ZH, Huang QM, Xing LD, Wang CS, Li WS (2018) Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett 10:1–14

    Article  Google Scholar 

  17. 17.

    Hong WW, Ge P, Jiang YL, Yang L, Tian Y, Zou GQ, Cao XY, Hou HS (2019) Yolk−shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl Mater Interfaces 11:10829–10840

    CAS  Article  Google Scholar 

  18. 18.

    Huang YX, Zhu CY, Zhang SL, Hu XM, Zhang K, Zhou WH, Guo SY, Xu F, Zen HB (2019) Ultrathin bismuth nanosheets for stable Na-ion batteries: clarifification of structure and phase transition by in situ observation. Nano Lett 19:1118–1123

    Article  Google Scholar 

  19. 19.

    Xue P, Wang NN, Fang ZW, Lu ZX, Xu X, Wang L, Du Y, Ren XC, Bai ZC, Dou SX (2019) Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Lett 19:1998–2004

    CAS  Article  Google Scholar 

  20. 20.

    Yang H, Chen LW, He FX, Zhang JQ, Feng YZ, Zhao LK, Wang B, He LX, Zhang QB, Yu Y (2020) Optimizing the void size of yolk−shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries. Nano Lett 20:758–767

    CAS  Article  Google Scholar 

  21. 21.

    Yang H, Xu R, Yao Y, Ye SF, Zhou XF, Yu Y (2019) Multicore–shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes. Adv Funct Mater:1809195

  22. 22.

    Li WH, Hu SH, Luo XY, Li ZL, Sun XZ, Li MS, Liu FF, Yu Y (2017) Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater 29:1605820

    Article  Google Scholar 

  23. 23.

    Ma S, Yin KB, Gao H, Niu JZ, Peng ZQ, Zhang ZH (2018) Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy 10:027

    Google Scholar 

  24. 24.

    Zhao B, Manthiram A (2015) High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem Mater 27(8):3096–3101

    CAS  Article  Google Scholar 

  25. 25.

    Youn DH, Park HM, Loeffler KE, Kim JH, Heller A, Mullins CB (2018) Enhanced electrochemical performance of tin-antimony alloy/N-doped carbon nanocomposite as a sodium ion battery anode. ChemElectroChem 5:391–396

    CAS  Article  Google Scholar 

  26. 26.

    Yin H, Li QW, Cao ML, Zhang W, Zhao H, Li C, Huo KF, Zhu MQ (2017) Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res 10:2156–2167

    CAS  Article  Google Scholar 

  27. 27.

    Stokes K, Flynn G, Geaney H, Bree G, Ryan KM (2018) Axial Si−Ge heterostructure nanowires as lithium-ion battery anodes. Nano Lett 18:5569–5575

    CAS  Article  Google Scholar 

  28. 28.

    Song T, Cheng HY, Town K, Park H, Black RW, Lee S et al (2014) Electrochemical properties of Si-Ge heterostructures as an anode material for lithium ion batteries. Adv Funct Mater 24:1458–1464

    CAS  Article  Google Scholar 

  29. 29.

    Wang YN, Jiang JY, Liu XX, Liu XQ, Xiang Y, Wu R, Chen Y, Chen JS (2020) Local confinement and alloy/dealloy activation of Sn-Cu nanoarrays for high performance lithium-ion battery. Electrochim Acta 336:135690

    CAS  Article  Google Scholar 

  30. 30.

    Wang HG, Wu Z, Meng FL, Ma DL, Huang XL, Wang LM, Zhang XB (2013) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 6:56–60

    CAS  Article  Google Scholar 

  31. 31.

    Zhu CB, Kopold P, Li WH, van Aken PA, Maier J, Yu Y (2015) Ni3S2 nanosheet-anchored carbon submicron tube arrays as high-performance binder-free anodes for Na-ion batteries. Adv Sci 2:1500200

    Article  Google Scholar 

  32. 32.

    Stratford JM, Mayo M, Allan PK, Pecher O, Borkiewicz OJ, Wiaderek KM, Chapman KW, Pickard CJ, Morris AJ, Grey CP (2017) Investigating sodium storage mechanisms in tin anodes: a combined pair distribution function analysis, density functional theory, and solid-state NMR approach. J Am Chem Soc 139:7273–7286

    CAS  Article  Google Scholar 

  33. 33.

    Zhong YT, Li B, Li SM, Xu SY, Pan ZH, Huang QM, Xing LD, Wang CS, Li WS (2018) Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett 56:2–14

    Google Scholar 

  34. 34.

    Li YY, Ou CZ, Zhu JL, Liu ZG, Yu JL, Li WW, Zhang HY, Zhang QB, Guo ZP (2020) Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene-encapsulated nitrogen-doped carbon@Sn compact monolith. Nano Lett 20:2034–2046

    CAS  Article  Google Scholar 

  35. 35.

    Xu W, Kong LJ, Huang H, Zhong M, Liu YY, Bu X (2019) Sn nanocrystals embedded in porous TiO2/C with improved capacity for sodium-ion batteries. Inorg Chem Front 6:2675–2681

    CAS  Article  Google Scholar 

  36. 36.

    Liu SA, Cai ZY, Zhou J, Pan AQ, Liang SQ (2016) Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J Mater Chem A 4:18278–18283

    CAS  Article  Google Scholar 

  37. 37.

    Li J, Xu X, Luo Z, Zhang C, Yu X, Zuo Y, Zhang T, Tang P, Arbiol J, Llorca J, Liu J, Cabot A (2019) Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochim Acta 304:246–254

    CAS  Article  Google Scholar 

  38. 38.

    Park MG, Lee DH, Jung H, Choi JH, Park CM (2018) A Sn-based nanocomposite for li-ion battery anode with high energy density, rate capability and reversibility. ACS Nano 12:2955–2967

    CAS  Article  Google Scholar 

  39. 39.

    Zuo DC, Song SC, An CS, Tang LB, He ZJ, Zheng JC (2019) Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage. Nano Energy 62:401–409

    CAS  Article  Google Scholar 

  40. 40.

    Ye XC, Lin ZH, Liang SJ, Huang XH, Qiu XY, Qiu YC, Liu XM, Xie D, Deng H, Xiong XH, Lin Z (2019) Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett 19:1860–1866

    CAS  Article  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Xinjiang Province (2019D01C083, 2018D01C078), State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China, The Natural Science Projects of Scientific Research Programs in Universities of Xinjiang (XJEDU2018Y016), National Natural Science Foundation of China (Grant Nos. 61804131, 11764040), and Start-up Foundation for Doctors of Xinjiang University (No. BS160217).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to L. Y. Yang or S. Y. Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 2649 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Yang, L.Y., Abliz, A. et al. Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage. Ionics (2021). https://doi.org/10.1007/s11581-021-03924-2

Download citation

Keywords

  • Bi/Sn@3D-C
  • 3D carbon structure
  • Lithium batteries
  • Sodium batteries