Urchin-like MnO/C microspheres as high-performance lithium-ion battery anode


Manganese oxide (MnO) is prospective as anode material for lithium-ion batteries (LIBs) due to its low insertion voltage and high reversible capacity. Here, urchin-like MnO microspheres with carbon coating (u-MnO/C) are synthesized through hydrothermal method, and its lithium storage performance is investigated. The unique urchin-like structures of u-MnO/C endow it high surface area which provides sufficient contact with electrolyte. The carbon coating can effectively suffer volume change of u-MnO during charge/discharge process. Meanwhile, the carbon coating can effectively improve the conductivity of u-MnO-based anode. Due to the above features, u-MnO/C delivers high initial capacity of 845 mAh g−1, and an obvious activation process is observed at the beginning of the cycles thanks to the abundant invasion of the electrolyte into u-MnO/C. The large capacity of 723 mAh g-1 can still be achieved after 80 cycles. This work provides a promising guide for designing high-performance LIBs electrode materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451(7179):652–657

    CAS  Article  Google Scholar 

  2. 2.

    Larcher D, Tarascon J-M (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

    CAS  Article  Google Scholar 

  3. 3.

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    CAS  Article  Google Scholar 

  4. 4.

    Reddy M, Subba Rao G, Chowdari B (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113(7):5364–5457

    CAS  Article  Google Scholar 

  5. 5.

    Li H, Richter G, Maier J (2003) Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 15(9):736–739

    CAS  Article  Google Scholar 

  6. 6.

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2001) Searching for new anode materials for the Li-ion technology: time to deviate from the usual path. J Power Sources 97:235–239

    Article  Google Scholar 

  7. 7.

    Zhong K, Xia X, Zhang B, Li H, Wang Z, Chen L (2010) MnO powder as anode active materials for lithium ion batteries. J Power Sources 195(10):3300–3308

    CAS  Article  Google Scholar 

  8. 8.

    Yu X, He Y, Sun J, Tang K, Li H, Chen L, Huang X (2009) Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem Commun 11(4):791–794

    CAS  Article  Google Scholar 

  9. 9.

    Fang Y, Lv Y, Gong F, Elzatahry AA, Zheng G, Zhao D (2016) Synthesis of 2D-mesoporous-carbon/MoS2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries. Adv Mater 28(42):9385–9390

    CAS  Article  Google Scholar 

  10. 10.

    Forney MW, Ganter MJ, Staub JW, Ridgley RD, Landi BJ (2013) Prelithiation of silicon–carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett 13(9):4158–4163

    CAS  Article  Google Scholar 

  11. 11.

    Noerochim L, Wang J-Z, Chou S-L, Wexler D, Liu H-K (2012) Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 50(3):1289–1297

    CAS  Article  Google Scholar 

  12. 12.

    Wang Y, Zeng HC, Lee JY (2006) Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater 18(5):645–649

    CAS  Article  Google Scholar 

  13. 13.

    Wang X, Cao X, Bourgeois L, Guan H, Chen S, Zhong Y, Tang DM, Li H, Zhai T, Li L (2012) N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv Funct Mater 22(13):2682–2690

    CAS  Article  Google Scholar 

  14. 14.

    Zhang W, Sheng J, Zhang J, He T, Hu L, Wang R, Mai L, Mu S (2016) Hierarchical three-dimensional MnO nanorods/carbon anodes for ultralong-life lithium-ion batteries. J Mater Chem A 4(43):16936–16945

    CAS  Article  Google Scholar 

  15. 15.

    Gong Y, Sun L, Si H, Zhang Y, Shi Y, Wu L, Gu J, Zhang Y (2020) MnO nanorods coated by Co-decorated N-doped carbon as anodes for high performance lithium ion batteries. Appl Surf Sci 504:144479

    CAS  Article  Google Scholar 

  16. 16.

    Li X, Li D, Qiao L, Wang X, Sun X, Wang P, He D (2012) Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. J Mater Chem 22(18):9189–9194

    CAS  Article  Google Scholar 

  17. 17.

    Wang S, Xiao C, Xing Y, Xu H, Zhang S (2015) Formation of a stable carbon framework in a MnO yolk–shell sphere to achieve exceptional performance for a Li-ion battery anode. J Mater Chem A 3(30):15591–15597

    CAS  Article  Google Scholar 

  18. 18.

    Wang J-G, Zhang C, Jin D, Xie K, Wei B (2015) Synthesis of ultralong MnO/C coaxial nanowires as freestanding anodes for high-performance lithium ion batteries. J Mater Chem A 3(26):13699–13705

    CAS  Article  Google Scholar 

  19. 19.

    Sun Q, Wang Z, Zhang Z, Yu Q, Qu Y, Zhang J, Yu Y, Xiang B (2016) Rational design of graphene-reinforced MnO nanowires with enhanced electrochemical performance for Li-ion batteries. ACS Appl Mater Interfaces 8(10):6303–6308

    CAS  Article  Google Scholar 

  20. 20.

    Xiao Y, Cao M (2015) Carbon-anchored MnO nanosheets as an anode for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 7(23):12840–12849

    CAS  Article  Google Scholar 

  21. 21.

    Sheng L, Liang S, Wei T, Chang J, Jiang Z, Zhang L, Zhou Q, Zhou J, Jiang L, Fan Z (2018) Space-confinement of MnO nanosheets in densely stacked graphene: ultra-high volumetric capacity and rate performance for lithium-ion batteries. Energy Storage Mater 12:94–102

    Article  Google Scholar 

  22. 22.

    Liu J, Pan Q (2010) MnO/C nanocomposites as high capacity anode materials for Li-ion batteries. Electrochem Solid-State Lett 13(10):A139

    CAS  Article  Google Scholar 

  23. 23.

    Lee R-C, Lin Y-P, Weng Y-T, Pan H-A, Lee J-F, Wu N-L (2014) Synthesis of high-performance MnOx/carbon composite as lithium-ion battery anode by a facile co-precipitation method: effects of oxygen stoichiometry and carbon morphology. J Power Sources 253:373–380

    CAS  Article  Google Scholar 

  24. 24.

    Mai Y, Zhang D, Qiao Y, Gu C, Wang X, Tu J (2012) MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J Power Sources 216:201–207

    CAS  Article  Google Scholar 

  25. 25.

    Zhong K, Zhang B, Luo S, Wen W, Li H, Huang X, Chen L (2011) Investigation on porous MnO microsphere anode for lithium ion batteries. J Power Sources 196(16):6802–6808

    CAS  Article  Google Scholar 

  26. 26.

    Zhang S, Zhu L, Song H, Chen X, Zhou J (2014) Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries. Nano Energy 10:172–180

    CAS  Article  Google Scholar 

  27. 27.

    Sun Y, Hu X, Luo W, Xia F, Huang Y (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23(19):2436–2444

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the Fundamental Research Funds for the Central Universities (Nos. 53200859564 and 53200859035). The Research Starting Foundation from Shaanxi University of Science and Technology (Grant No. 2018GBJ-04).

Author information



Corresponding authors

Correspondence to Yangai Liu or Guoquan Suo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Shen, L., Liu, Y. et al. Urchin-like MnO/C microspheres as high-performance lithium-ion battery anode. Ionics (2021). https://doi.org/10.1007/s11581-021-03921-5

Download citation


  • Lithium ion batteries
  • MnO
  • C
  • Composite
  • Microsphere