Contribution of different charge storage mechanisms in cobalt pyrophosphate–based supercapattery

Abstract

Research on supercapattery has been rising as the state of the art of modern energy storage devices because of its excellent efficiency in terms of power and energy density. In this aspect, layered materials supply better electrochemical attributes, but inadequacy in rate performance, which is the key factor of energy storage devices, forbids its wide application. Herein, we report a simple method of α phase Co2P2O7 synthesis and evaluated its performance by varying the calcination temperature. The electrochemical performance of C550, C650 and C750 was examined in a three-electrode cell configuration utilizing 1 M KOH electrolyte. Since the sample C750 demonstrated the high electrochemical performance, it was further examined in a two-electrode system for the hybrid device. The assembled hybrid device renders a high specific capacity (126.5 C/g) and energy density (23.8 Wh kg−1 @ a power density of 575.3 W kg−1) with good cycling stability (specific capacitance retention of 79% over 5000 cycles). The improved electrochemical performance is attributed to the augmented redox sites with short diffusion pathways of nanoparticles.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Yu A, Davies A, Chen Z (2012) Electrochemical supercapacitors. Electrochem Technol Energy Storage Convers 1:317–382. https://doi.org/10.1002/9783527639496.ch8

    Article  CAS  Google Scholar 

  2. 2.

    Matheswaran P, Karuppiah P, Chen SM, Thangavel P (2020) New J Chem 44:13131–13140. https://doi.org/10.1039/D0NJ00890G

  3. 3.

    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(80):1210–1211. https://doi.org/10.1126/science.1249625

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531. https://doi.org/10.1039/b813846j

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Li J, Zhang X, Peng R, Huang Y, Guo L, Qi Y (2016) LiMn2O4/graphene composites as cathodes with enhanced electrochemical performance for lithium-ion capacitors. RSC Adv 6:54866–54873. https://doi.org/10.1039/c6ra09103b

    Article  CAS  Google Scholar 

  6. 6.

    Peifeng Z, Huiqing F, Yunfei F, Zhuo L, Yongli D (2006) Synthesis and electrochemical properties of sol-gel derived LiMn2O4 cathode for lithium-ion batteries. Rare Metals 25:100–104. https://doi.org/10.1016/S1001-0521(07)60053-9

    Article  Google Scholar 

  7. 7.

    Zou H, Wang B, Wen F, Chen L (2017) Hydrothermal synthesis of pure LiMn2O4 from nanostructured MnO2 precursors for aqueous hybrid supercapacitors. Ionics 23:1083–1090. https://doi.org/10.1007/s11581-016-1927-3

    Article  CAS  Google Scholar 

  8. 8.

    Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854. https://doi.org/10.1039/c2ee21892e

    Article  CAS  Google Scholar 

  9. 9.

    Sankar KV, Lee SC, Seo Y, Ray C, Liu S, Kundu A, Jun SC (2018) Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications. J Power Sources 373:211–219. https://doi.org/10.1016/j.jpowsour.2017.11.013

    Article  CAS  Google Scholar 

  10. 10.

    Zheng MB, Cao J, Liao ST, Liu JS, Chen HQ, Zhao Y, Dai WJ, Ji GB, Cao JM, Tao J (2009) Preparation of mesoporous Co3O4 nanoparticles via solid-liquid route and effects of calcination temperature and textural parameters on their electrochemical capacitive behaviors. J Phys Chem C 113:3887–3894. https://doi.org/10.1021/jp810230d

    Article  CAS  Google Scholar 

  11. 11.

    Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188–2196. https://doi.org/10.1021/am400012h

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Niu Y, Zhang Y, Xu M (2019) A review on pyrophosphate framework cathode materials for sodium-ion batteries. J Mater Chem A 7:15006–15025. https://doi.org/10.1039/c9ta04274a

    Article  CAS  Google Scholar 

  13. 13.

    Gond R, Barpanda P (2017) Pyrophosphate family of polyanionic cathodes towards safe rechargeable batteries. Acta Crystallogr A 73:C901–C901. https://doi.org/10.1107/s2053273317086739

    Article  Google Scholar 

  14. 14.

    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614. https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  15. 15.

    Khan Z, Senthilkumar B, Lim S, Shanker R, Kim Y, Ko H (2017) Redox-additive-enhanced high capacitance supercapacitors based on Co2P2O7 nanosheets. Adv Mater Interfaces 4:1–7. https://doi.org/10.1002/admi.201700059

    Article  CAS  Google Scholar 

  16. 16.

    Hou L, Lian L, Li D, Lin J, Pan G, Zhang L, Zhang X, Zhang Q, Yuan C (2013) Facile synthesis of Co2P2O7 nanorods as a promising pseudocapacitive material towards high-performance electrochemical capacitors. RSC Adv 3:21558–21562. https://doi.org/10.1039/c3ra41257a

    Article  CAS  Google Scholar 

  17. 17.

    Li K, Guo M, Yan Y, Zhan K, Yang J, Zhao B, Li J (2019) Ultrasmall Co2P2O7 nanocrystals anchored on nitrogen-doped graphene as efficient electrocatalysts for the oxygen reduction reaction. New J Chem 43:6492–6499. https://doi.org/10.1039/c9nj00299e

    Article  CAS  Google Scholar 

  18. 18.

    Parra MR, Haque FZ (2014) Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J Mater Res Technol 3:363–369. https://doi.org/10.1016/j.jmrt.2014.07.001

    Article  CAS  Google Scholar 

  19. 19.

    Habibi A, Jalaly M, Rahmanifard R, Ghorbanzadeh M (2018) The effect of calcination conditions on the crystal growth and battery performance of nanocrystalline Li (Ni1/3Co1/3Mn1/3)O2 as a cathode material for Li-ion batteries. New J Chem 42:19026–19033. https://doi.org/10.1039/c8nj05007d

    Article  CAS  Google Scholar 

  20. 20.

    Pang H, Zhang YZ, Run Z, Lai WY, Huang W (2015) Amorphous nickel pyrophosphate microstructures for high-performance flexible solid-state electrochemical energy storage devices. Nano Energy 17:339–347. https://doi.org/10.1016/j.nanoen.2015.07.030

    Article  CAS  Google Scholar 

  21. 21.

    Capitelli F, Harcharras M, Assaaoudi H, Ennaciri A, Moliterni AGG, Bertolasi V (2003) Crystal structure of new hexahydrate dicobalt pyrophosphate Co2P2O7· 6 H2O: comparison with Co2P2O7· 2 H2O, α-, β, and γ-Co2P2O7. Zeitschrift Fur Krist 218:345–350. https://doi.org/10.1524/zkri.218.5.345.20738

    Article  CAS  Google Scholar 

  22. 22.

    Wang WP, Pang H, Jin ML, Shen X, Yao Y, Wang YG, Li YC, Li XD, Jin CQ, Yu RC (2018) Studies on the structural stability of Co 2 P 2 O 7 under pressure. J Phys Chem Solids 116:113–117. https://doi.org/10.1016/j.jpcs.2018.01.028

    Article  CAS  Google Scholar 

  23. 23.

    Boonchom B, Phuvongpha N (2009) Synthesis of new binary cobalt iron pyrophosphate CoFeP2O7. Mater Lett 63:1709–1711. https://doi.org/10.1016/j.matlet.2009.05.026

    Article  CAS  Google Scholar 

  24. 24.

    Pang H, Yan Z, Ma Y, Li G, Chen J, Zhang J, du W, Li S (2013) Cobalt pyrophosphate nano/microstructures as promising electrode materials of supercapacitor. J Solid State Electrochem 17:1383–1391. https://doi.org/10.1007/s10008-013-2007-5

    Article  CAS  Google Scholar 

  25. 25.

    Sankar KV, Shanmugapriya S, Surendran S, Jun SC, Selvan RK (2018) Facile hydrothermal synthesis of carbon-coated cobalt ferrite spherical nanoparticles as a potential negative electrode for flexible supercapattery. J Colloid Interface Sci 513:480–488. https://doi.org/10.1016/j.jcis.2017.11.054

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Gogotsi Y, Simon P (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  27. 27.

    Mondal M, Das B, Howli P, Das NS, Chattopadhyay KK (2018) Porosity-tuned NiO nanoflakes: effect of calcination temperature for high performing supercapacitor application. J Electroanal Chem 813:116–126. https://doi.org/10.1016/j.jelechem.2018.01.049

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pazhanivel Thangavelu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matheswaran, P., Karuppiah, P. & Thangavelu, P. Contribution of different charge storage mechanisms in cobalt pyrophosphate–based supercapattery. Ionics 27, 1769–1780 (2021). https://doi.org/10.1007/s11581-021-03908-2

Download citation

Keywords

  • Cobalt pyrophosphate
  • Electrochemical performance
  • Supercapattery