Turning waste into treasure: biomass carbon derived from sunflower seed husks used as anode for lithium-ion batteries


In this paper, sunflower seed husks were used as raw materials to prepare porous biomass carbon through physical carbonization and chemical activation. Calcium chloride and pyromellitic acid were used as activators and processing assistant. The influences of activation temperature and processing additives on the activation mechanism of CaCl2 were analyzed. The results showed that activation temperature and processing aids act on the two competing mechanisms of micropore formation and pore expansion, respectively. The average pore diameter of the resulting sample was 9.75 nm, and the specific surface area was 404.215 m2 g−1. The sample was circulated 100 cycles at 0.2 C. The specific flow was 1100 mAh g−1 in the change rate test. The discharge specific capacity was 590 mAh g−1 after 450 cycles at 2 C rate. The structure of the sample collapsed after 250 cycles at 5 C, and the specific discharge capacity dropped to 390 mAh g−1 after 350 cycles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Chen F, Yang J, Bai T, Long B, Zhou X (2016) Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries. Electrochim Acta 192:99–109. https://doi.org/10.1016/j.electacta.2016.01.192

    CAS  Article  Google Scholar 

  2. 2.

    Gao Y et al (2011) Characterization of products from hydrothermal liquefaction and carbonation of biomass model compounds and real biomass. J Fuel Chem Technol 39:893–900. https://doi.org/10.1016/s1872-5813(12)60001-2

    CAS  Article  Google Scholar 

  3. 3.

    Liu T, Li X (2018) Biomass-derived nanostructured porous carbons for sodium ion batteries: a review. Mater Technol 34:232–245. https://doi.org/10.1080/10667857.2018.1545392

    CAS  Article  Google Scholar 

  4. 4.

    Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Zhang X et al (2019) Microtubular carbon fibers derived from bamboo and wood as sustainable anodes for lithium and sodium ion batteries. J Porous Mater 26:1821–1830. https://doi.org/10.1007/s10934-019-00781-3

    CAS  Article  Google Scholar 

  6. 6.

    Cao J, Zhu C, Aoki Y, Habazaki H (2018) Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain Chem Eng 6:7292–7303. https://doi.org/10.1021/acssuschemeng.7b04459

    CAS  Article  Google Scholar 

  7. 7.

    Zheng P et al (2015) Sweet potato-derived carbon nanoparticles as anode for lithium ion battery. RSC Adv 5:40737–40741. https://doi.org/10.1039/c5ra03482e

    CAS  Article  Google Scholar 

  8. 8.

    Osma JF, Saravia V, Toca-Herrera JL, Couto SR (2007) Sunflower seed shells: a novel and effective low-cost adsorbent for the removal of the diazo dye reactive black 5 from aqueous solutions. J Hazard Mater 147:900–905. https://doi.org/10.1016/j.jhazmat.2007.01.112

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Stefanowski BK, Curling SF, Ormondroyd GA (2017) Assessment of lignocellulosic nut wastes as an absorbent for gaseous formaldehyde. Ind Crop Prod 98:25–28. https://doi.org/10.1016/j.indcrop.2017.01.012

    CAS  Article  Google Scholar 

  10. 10.

    Lee J, Kim K-H, Kwon EE (2017) Biochar as a catalyst. Renew Sust Energ Rev 77:70–79. https://doi.org/10.1016/j.rser.2017.04.002

    CAS  Article  Google Scholar 

  11. 11.

    Marx S, Chiyanzu I, Piyo N (2014) Influence of reaction atmosphere and solvent on biochar yield and characteristics. Bioresour Technol 164:177–183. https://doi.org/10.1016/j.biortech.2014.04.067

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Rojas R, Vanderlinden E, Morillo J, Usero J, El Bakouri H (2014) Characterization of sorption processes for the development of low-cost pesticide decontamination techniques. Sci Total Environ 488-489:124–135. https://doi.org/10.1016/j.scitotenv.2014.04.079

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Zou Z, Tang Y, Jiang C, Zhang J (2015) Efficient adsorption of Cr(VI) on sunflower seed hull derived porous carbon. J Environ Chem Eng 3:898–905. https://doi.org/10.1016/j.jece.2015.02.025

    CAS  Article  Google Scholar 

  14. 14.

    Deng S et al (2015) Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption 21:125–133. https://doi.org/10.1007/s10450-015-9655-y

    CAS  Article  Google Scholar 

  15. 15.

    Ai L, Luo X, Lin X, Zhang S (2013) Biosorption behaviors of uranium (VI) from aqueous solution by sunflower straw and insights of binding mechanism. J Radioanal Nucl Chem 298:1823–1834. https://doi.org/10.1007/s10967-013-2613-9

    CAS  Article  Google Scholar 

  16. 16.

    Kong J, Han C, Yu Y, Dong L (2018) Production and characterization of sustainable poly(lactic acid)/functionalized-eggshell composites plasticized by epoxidized soybean oil. J Mater Sci 53:14386–14397. https://doi.org/10.1007/s10853-018-2656-y

    CAS  Article  Google Scholar 

  17. 17.

    Wu P et al (2019) Long cycle life, low self-discharge carbon anode for Li-ion batteries with pores and dual-doping. J Alloys Compd 802:620–627. https://doi.org/10.1016/j.jallcom.2019.06.233

    CAS  Article  Google Scholar 

  18. 18.

    Zou Y et al (2017) Multishelled Ni-rich li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-Ion batteries. Adv Sci 4. https://doi.org/10.1002/advs.201600262

  19. 19.

    Sankar S et al (2019) Spherical activated-carbon nanoparticles derived from biomass green tea wastes for anode material of lithium-ion battery. Mater Lett 240:189–192. https://doi.org/10.1016/j.matlet.2018.12.143

    CAS  Article  Google Scholar 

  20. 20.

    Yan P, Ai F, Cao C, Luo Z (2019) Hierarchically porous carbon derived from wheat straw for high rate lithium ion battery anodes. J Mater Sci Mater Electron 30:14120–14129. https://doi.org/10.1007/s10854-019-01778-z

    CAS  Article  Google Scholar 

  21. 21.

    Luo J, Zhang H, Zhang Z, Yu J, Yang Z (2019) In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage. Carbon 155:1–8. https://doi.org/10.1016/j.carbon.2019.08.044

    CAS  Article  Google Scholar 

  22. 22.

    Fromm O et al (2018) Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon 128:147–163. https://doi.org/10.1016/j.carbon.2017.11.065

    CAS  Article  Google Scholar 

  23. 23.

    Surayah Osman N et al (2018) Sunflower shell waste as an alternative animal feed. Mater Today Proc 5:21905–21910. https://doi.org/10.1016/j.matpr.2018.07.049

    CAS  Article  Google Scholar 

  24. 24.

    Liu P et al (2019) Ultrafast preparation of saccharide-derived carbon microspheres with excellent dispersibility via ammonium persulfate-assisted hydrothermal carbonization. J Mater Chem A 7:18840–18845. https://doi.org/10.1039/c9ta05557f

    CAS  Article  Google Scholar 

  25. 25.

    Liou T-H (2010) Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem Eng J 158:129–142. https://doi.org/10.1016/j.cej.2009.12.016

    CAS  Article  Google Scholar 

  26. 26.

    Raclavska H, Juchelkova D, Roubicek V, Matysek D (2011) Energy utilisation of biowaste—sunflower-seed hulls for co-firing with coal. Fuel Process Technol 92:13–20. https://doi.org/10.1016/j.fuproc.2010.03.006

    CAS  Article  Google Scholar 

  27. 27.

    Ren XE et al (2018) thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model. Bioresour Technol 261:403–411. https://doi.org/10.1016/j.biortech.2018.04.047

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Vassilev SV, Vassileva CG, Baxter D (2014) Trace element concentrations and associations in some biomass ashes. Fuel 129:292–313. https://doi.org/10.1016/j.fuel.2014.04.001

    CAS  Article  Google Scholar 

  29. 29.

    Xing W, Li X, Gao XL, Zhuo SP (2011) Highly porous carbon derived from sunflower seed shell for electrochemical capacitor. Adv Mater Res 287-290:1420–1423. https://doi.org/10.4028/www.scientific.net/AMR.287-290.1420

    CAS  Article  Google Scholar 

  30. 30.

    Zhang S, Yang X, Ju M, Liu L, Zheng K (2018) Mercury adsorption to aged biochar and its management in China. Environ Sci Pollut Res 26:4867–4877. https://doi.org/10.1007/s11356-018-3945-3

    CAS  Article  Google Scholar 

  31. 31.

    Fang T et al (2020) A comparative investigation on lithium storage performance of carbon microsphere originated from agriculture bio-waste materials: sunflower stalk and walnut shell. Waste Biomass Valorization. https://doi.org/10.1007/s12649-019-00927-z

  32. 32.

    Li X et al (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102:1118–1123. https://doi.org/10.1016/j.biortech.2010.08.110

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Intawin P et al (2017) Bio-derived hierarchical 3D architecture from seeds for supercapacitor application. JOM 69:1513–1518. https://doi.org/10.1007/s11837-017-2406-7

    CAS  Article  Google Scholar 

  34. 34.

    Zhao H et al (2017) Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization. J Mater Sci 52:10787–10799. https://doi.org/10.1007/s10853-017-1258-4

    CAS  Article  Google Scholar 

  35. 35.

    Zhang HY et al (2015) A simple method to prepare carbon nanotubes from sunflower seed hulls and sago and their application in supercapacitor. Pigm Resin Technol 44:7–12. https://doi.org/10.1108/prt-10-2013-0090

    Article  Google Scholar 

  36. 36.

    Jia M et al (2017) Porous carbon derived from sunflower as a host matrix for ultra-stable lithium–selenium battery. J Colloid Interface Sci 490:747–753. https://doi.org/10.1016/j.jcis.2016.12.012

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Molina-Sabio M, Rodríguez-Reinoso F (2004) Role of chemical activation in the development of carbon porosity. Colloids Surf A Physicochem Eng Asp 241:15–25. https://doi.org/10.1016/j.colsurfa.2004.04.007

    CAS  Article  Google Scholar 

  38. 38.

    Sevilla M, Fuertes AB, Mokaya R (2011) High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ Sci 4. https://doi.org/10.1039/c0ee00347f

  39. 39.

    Amarasekara AS, Ebede CC (2009) Zinc chloride mediated degradation of cellulose at 200°C and identification of the products. Bioresour Technol 100:5301–5304. https://doi.org/10.1016/j.biortech.2008.12.066

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Jain A et al (2017) Highly mesoporous carbon from teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors. Electrochim Acta 228:131–138. https://doi.org/10.1016/j.electacta.2017.01.060

    CAS  Article  Google Scholar 

  41. 41.

    Bautista-Gallego J, Arroyo-López FN, López-López A, Garrido-Fernández A (2011) Effect of chloride salt mixtures on selected attributes and mineral content of fermented cracked Aloreña olives. LWT Food Sci Technol 44:120–129. https://doi.org/10.1016/j.lwt.2010.06.027

    CAS  Article  Google Scholar 

  42. 42.

    Molenda M et al (2013) Carbon nanocoatings for C/LiFePO4 composite cathode. Solid State Ionics 251:47–50. https://doi.org/10.1016/j.ssi.2013.03.003

    CAS  Article  Google Scholar 

  43. 43.

    Molenda M et al (2013) Pyrolytic carbons derived from water soluble polymers. J Therm Anal Calorim 113:329–334. https://doi.org/10.1007/s10973-013-3212-2

    CAS  Article  Google Scholar 

  44. 44.

    Świętosławski M et al (2018) Stability of Li2MSiO4 (M = Mn, Co) in the carbon coating process. Solid State Ionics 320:221–225. https://doi.org/10.1016/j.ssi.2018.02.023

    CAS  Article  Google Scholar 

  45. 45.

    Luna-Lama F et al (2019) Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. J Clean Prod 207:411–417. https://doi.org/10.1016/j.jclepro.2018.10.024

    CAS  Article  Google Scholar 

  46. 46.

    Lv Y et al (2020) Application of porous biomass carbon materials in vanadium redox flow battery. J Colloid Interface Sci 566:434–443. https://doi.org/10.1016/j.jcis.2020.01.118

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Zhang X et al (2018) Strategy for preparing porous graphitic carbon for supercapacitor: balance on porous structure and graphitization degree. J Electrochem Soc 165:A2084–A2092. https://doi.org/10.1149/2.0491910jes

    CAS  Article  Google Scholar 

  48. 48.

    Yoo S, Chung C-C, Kelley SS, Park S (2018) Graphitization behavior of loblolly pine wood investigated byin situhigh temperature X-ray diffraction. ACS Sustain Chem Eng 6:9113–9119. https://doi.org/10.1021/acssuschemeng.8b01446

    CAS  Article  Google Scholar 

  49. 49.

    Kim HG, Kim Y-S, Kwac LK, Shin HK (2020) Characterization of activated carbon paper electrodes prepared by rice husk-isolated cellulose fibers for supercapacitor applications. Molecules 25. https://doi.org/10.3390/molecules25173951

  50. 50.

    Li H et al (2020) Catalytic graphitization of coke carbon by iron: understanding the evolution of carbon Structure, morphology and lattice fringes. Fuel 279. https://doi.org/10.1016/j.fuel.2020.118531

  51. 51.

    Selvan RK et al (2018) Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries. J Colloid Interface Sci 513:231–239. https://doi.org/10.1016/j.jcis.2017.11.016

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Thirukumaran P et al (2020) Metal-free nitrogen-rich glassy carbon as an electrocatalyst for hydrogen evolution reaction. Mater Res Bull 124. https://doi.org/10.1016/j.materresbull.2019.110734

  53. 53.

    Li Y et al (2015) Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A 3:71–77. https://doi.org/10.1039/c4ta05451b

    CAS  Article  Google Scholar 

  54. 54.

    Li Y et al (2019) Coal tar electrode pitch modified rice husk ash as anode for lithium ion batteries. J Electrochem Soc 166:A2425–A2430. https://doi.org/10.1149/2.0271912jes

    CAS  Article  Google Scholar 

  55. 55.

    Zhang X (2020) et al, Pine wood-derived hollow carbon fibers@NiO@rGO hybrids as sustainable anodes for lithium-ion batteries. J Alloys Compd 822. https://doi.org/10.1016/j.jallcom.2020.153718

  56. 56.

    Zhang T et al (2017) Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries. RSC Adv 7:41504–41511. https://doi.org/10.1039/c7ra07231g

    CAS  Article  Google Scholar 

  57. 57.

    Zhu Y, Chen M, Li Q, Yuan C, Wang C (2018) A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon 129:695–701. https://doi.org/10.1016/j.carbon.2017.12.103

    CAS  Article  Google Scholar 

  58. 58.

    Wu J et al (2016) Preparation of biomass-derived hierarchically porous carbon/Co 3 O 4 nanocomposites as anode materials for lithium-ion batteries. J Alloys Compd 656:745–752. https://doi.org/10.1016/j.jallcom.2015.10.063

    CAS  Article  Google Scholar 

  59. 59.

    Tian W, Wang L, Huo K, He X (2019) Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries. J Power Sources 430:60–66. https://doi.org/10.1016/j.jpowsour.2019.04.086

    CAS  Article  Google Scholar 

  60. 60.

    Zhao G et al (2017) Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. J Mater Chem A 5:24353–24360. https://doi.org/10.1039/c7ta07860a

    CAS  Article  Google Scholar 

  61. 61.

    Eddahech A, Briat O, Bertrand N, Delétage J-Y, Vinassa J-M (2012) Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int J Electr Power Energy Syst 42:487–494. https://doi.org/10.1016/j.ijepes.2012.04.050

    Article  Google Scholar 

  62. 62.

    Zhou H, Zhou F, Shi S, Yang W, Song Z (2020) Influence of working temperature on the electrochemical characteristics of Al2O3-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for Li-ion batteries. J Alloys Compd 847. https://doi.org/10.1016/j.jallcom.2020.156412

  63. 63.

    Zhu Y et al (2017) Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons. ACS Catal 7:3540–3547. https://doi.org/10.1021/acscatal.7b00120

    CAS  Article  Google Scholar 

  64. 64.

    Suarez-Hernandez R, Ramos-Sánchez G, Santos-Mendoza IO, Guzmán-González G, González I (2020) A graphical approach for identifying the limiting processes in lithium-ion battery cathode using electrochemical impedance spectroscopy. J Electrochem Soc 167. https://doi.org/10.1149/1945-7111/ab95c7

  65. 65.

    Cruz-Manzo S, Greenwood P (2020) An impedance model based on a transmission line circuit and a frequency dispersion Warburg component for the study of EIS in Li-ion batteries. J Electroanal Chem 871. https://doi.org/10.1016/j.jelechem.2020.114305

  66. 66.

    Cao B et al (2018) Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv Energy Mater 8. https://doi.org/10.1002/aenm.201801149

  67. 67.

    Niu J et al (2017) Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy 36:322–330. https://doi.org/10.1016/j.nanoen.2017.04.042

    CAS  Article  Google Scholar 

  68. 68.

    Zhang J, Chen Z, Wang G, Hou L, Yuan C (2020) Eco-friendly and scalable synthesis of micro−/mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries. Appl Surf Sci 533. https://doi.org/10.1016/j.apsusc.2020.147511

  69. 69.

    Khatoon R et al (2020) Facile synthesis of α-Fe2O3/Nb2O5 heterostructure for advanced Li-Ion batteries. J Alloys Compd 837. https://doi.org/10.1016/j.jallcom.2020.155294

  70. 70.

    Dou Y et al (2019) Biomass porous carbon derived from jute fiber as anode materials for lithium-ion batteries. Diam Relat Mater 98. https://doi.org/10.1016/j.diamond.2019.107514

  71. 71.

    Arie AA, Kristianto H, Cengiz EC, Demir-Cakan R (2019) Waste tea-based porous carbon–sulfur composite cathodes for lithium–sulfur battery. Ionics 26:201–212. https://doi.org/10.1007/s11581-019-03196-x

    CAS  Article  Google Scholar 

  72. 72.

    Choi C, Seo S-D, Kim B-K, Kim D-W (2016) Enhanced lithium storage in hierarchically porous carbon derived from waste tea leaves. Sci Rep 6. https://doi.org/10.1038/srep39099

  73. 73.

    Li Y, Li C, Qi H, Yu K, Li X (2018) Formation mechanism and characterization of porous biomass carbon for excellent performance lithium-ion batteries. RSC Adv 8:12666–12671. https://doi.org/10.1039/c8ra02002g

    CAS  Article  Google Scholar 

  74. 74.

    Yu K et al (2019) Hydrothermal synthesis of cellulose-derived carbon nanospheres from corn straw as anode materials for lithium ion batteries. Nanomaterials 9. https://doi.org/10.3390/nano9010093

Download references


This work was financially supported by Jilin Provincial Scientific and Technological Department (20190302055GX, 20190302037GX) and the China Postdoctoral Science Foundation (2017 M611321).

Author information




Yi Li and Ce Liang developed the idea of the study. Hechang Shi and Kaifeng Yu participated in its design and coordination and helped to draft the manuscript. Yi Li and Hechang Shi contributed to the acquisition and interpretation of data. Kaifeng Yu and Ce Liang provided critical review and substantially revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ce Liang or Kaifeng Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shi, H., Liang, C. et al. Turning waste into treasure: biomass carbon derived from sunflower seed husks used as anode for lithium-ion batteries. Ionics 27, 1025–1039 (2021). https://doi.org/10.1007/s11581-020-03900-2

Download citation


  • Lithium-ion battery
  • Biomass
  • Sunflower seed husks
  • Porous carbon