Ultrathin graphitic C3N4 lithiophilic nanosheets regulating Li+ flux for lithium metal batteries


Uncontrollable dendrite growth hinders the direct use of lithium metal anode in batteries even though it has the highest energy density of all anode materials. Li and N atoms have strong interaction and could form Li–N bond, promising for regulating Li-ion flux during the plating/stripping process. Herein, we successfully prepared ultrathin graphitic carbon nitride (g-C3N4) nanosheets with a thickness of ~ 1 nm and formed a g-C3N4 thin layer over the lithium metal anode. The abundant nitrogen species within g-C3N4 nanosheets could form Li–N bonds to powerfully stabilize the lithium-ion flux and enhance the affinity of electrodes with electrolytes. On top of that, the thin layer could act as an artificial solid electrolyte interface (SEI) to suppress lithium dendrite growth and enable stable Li plating/stripping over 350 h at a high current density of 5 mA cm−2 with a low overpotential of about 50 mV. The reported work demonstrates a promising strategy of the functional artificial SEI design for Li metal anodes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Winter M, Barnett B, Xu K (2018) Before Li ion batteries[J]. Chem Rev 118:11433–11456

    CAS  PubMed  Google Scholar 

  2. 2.

    Armand M, Tarascon JM (2008) Building better batteries[J]. Nature 451:652–657

    CAS  PubMed  Google Scholar 

  3. 3.

    Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol 12:194–206

    CAS  PubMed  Google Scholar 

  4. 4.

    Li M, Lu J, Chen Z et al (2018) 30 years of lithium-ion batteries[J]. Adv Mater 30:e1800561

    Google Scholar 

  5. 5.

    Xie J, Lu YC (2020) A retrospective on lithium-ion batteries[J]. Nat Commun 11:2499

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Tang W, Yin X, Kang S et al (2018) Lithium silicide surface enrichment: a solution to lithium metal battery[J]. Adv Mater:e1801745

  7. 7.

    Cheng X-B, Yan C, Chen X, Guan C, Huang JQ, Peng HJ, Zhang R, Yang ST, Zhang Q (2017) Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem 2:258–270

    CAS  Google Scholar 

  8. 8.

    Guo Y, Li H, Zhai T (2017) Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Adv Mater 29:1700007

    Google Scholar 

  9. 9.

    Wu H, Cao Y, Geng L, Wang C (2017) In situ formation of stable interfacial coating for high performance lithium metal anodes[J]. Chem Mater 29:3572–3579

    CAS  Google Scholar 

  10. 10.

    Gao Y, Zhao Y, Li YC, Huang Q, Mallouk TE, Wang D (2017) Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries[J]. J Am Chem Soc 139:15288–15291

    CAS  PubMed  Google Scholar 

  11. 11.

    Liu F, Xiao Q, Wu HB, Shen L, Xu D, Cai M, Lu Y (2018) Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes[J]. Adv Energy Mater 8:1701744

    Google Scholar 

  12. 12.

    Chen L, Huang Z, Shahbazian-Yassar R, Libera JA, Klavetter KC, Zavadil KR, Elam JW (2018) Directly formed alucone on lithium metal for high-performance li batteries and li-s batteries with high sulfur mass loading[J]. ACS Appl Mater Interfaces 10:7043–7051

    CAS  PubMed  Google Scholar 

  13. 13.

    Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H, Ding F (2017) Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries[J]. ACS Appl Mater Interfaces 9:13694–13702

    CAS  PubMed  Google Scholar 

  14. 14.

    Zhang SJ, Gao ZG, Wang WW et al (2018) A natural biopolymer film as a robust protective layer to effectively stabilize lithium-metal anodes[J]. Small:e1801054

  15. 15.

    Shen X, Qian T, Chen P, Liu J, Wang M, Yan C (2018) Bioinspired polysulfiphobic artificial interphase layer on lithium metal anodes for lithium sulfur batteries[J]. ACS Appl Mater Interfaces 10:30058–30064

    CAS  PubMed  Google Scholar 

  16. 16.

    Xu R, Zhang X-Q, Cheng X-B, Peng HJ, Zhao CZ, Yan C, Huang JQ (2018) Artificial soft-rigid protective layer for dendrite-free lithium metal anode[J]. Adv Funct Mater 28:1705838

    Google Scholar 

  17. 17.

    Chen L, Chen KS, Chen X, Ramirez G, Huang Z, Geise NR, Steinrück HG, Fisher BL, Shahbazian-Yassar R, Toney MF, Hersam MC, Elam JW (2018) Novel ALD chemistry enabled low-temperature synthesis of lithium fluoride coatings for durable lithium anodes[J]. ACS Appl Mater Interfaces 10:26972–26981

    CAS  PubMed  Google Scholar 

  18. 18.

    Yuan Y, Wu F, Bai Y, Li Y, Chen G, Wang Z, Wu C (2019) Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode[J]. Energy Stor Mater 16:411–418

    Google Scholar 

  19. 19.

    Ma G, Wen Z, Wu M, Shen C, Wang Q, Jin J, Wu X (2014) A lithium anode protection guided highly-stable lithium-sulfur battery[J]. Chem Commun 50:14209–14212

    CAS  Google Scholar 

  20. 20.

    Liang J, Li X, Zhao Y et al (2018) In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes[J]. Adv Mater 30:e1804684

    PubMed  Google Scholar 

  21. 21.

    Wang C, Bai G, Yang Y et al (2018) Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes[J]. Nano Res 12:217–223

    CAS  Google Scholar 

  22. 22.

    Yan J, Yu J, Ding B (2018) Mixed ionic and electronic conductor for Li-metal anode protection[J]. Adv Mater 30:1705105

    Google Scholar 

  23. 23.

    Chen L, Connell JG, Nie A, Huang Z, Zavadil KR, Klavetter KC, Yuan Y, Sharifi-Asl S, Shahbazian-Yassar R, Libera JA, Mane AU, Elam JW (2017) Lithium metal protected by atomic layer deposition metal oxide for high performance anodes[J]. J Mater Chem A 5:12297–12309

    CAS  Google Scholar 

  24. 24.

    Lu K, Gao S, Dick RJ, Sattar Z, Cheng Y (2019) A fast and stable Li metal anode incorporating an Mo6S8 artificial interphase with super Li-ion conductivity[J]. J Mater Chem A 7:6038–6044

    CAS  Google Scholar 

  25. 25.

    Liu Y, Tzeng Y-K, Lin D, Pei A, Lu H, Melosh NA, Shen ZX, Chu S, Cui Y (2018) An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes[J]. Joule 2:1595–1609

    CAS  Google Scholar 

  26. 26.

    Wang D, Luan C, Zhang W, Liu X, Sun L, Liang Q, Qin T, Zhao Z, Zhou Y, Wang P, Zheng W (2018) Zipper-inspired SEI film for remarkably enhancing the stability of Li metal anode via nucleation barriers controlled weaving of lithium pits[J]. Adv Energy Mater 8:1800650

    Google Scholar 

  27. 27.

    Bai M, Xie K, Yuan K et al (2018) A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers[J]. Adv Mater:e1801213

  28. 28.

    Cha E, Patel MD, Park J, Hwang J, Prasad V, Cho K, Choi W (2018) 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries[J]. Nat Nanotechnol 13:337–344

    CAS  PubMed  Google Scholar 

  29. 29.

    Shi L, Xu A, Zhao T (2017) First-principles investigations of the working mechanism of 2D h-BN as an interfacial layer for the anode of lithium metal batteries[J]. ACS Appl Mater Interfaces 9:1987–1994

    CAS  PubMed  Google Scholar 

  30. 30.

    Xie J, Liao L, Gong Y et al (2017) Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode[J]. Sci Adv:eaao3170

  31. 31.

    Lang J, Song J, Qi L, Luo Y, Luo X, Wu H (2017) Uniform lithium deposition induced by polyacrylonitrile submicron fiber array for stable lithium metal anode[J]. ACS Appl Mater Interfaces 9:10360–10365

    CAS  PubMed  Google Scholar 

  32. 32.

    Yan K, Lu Z, Lee H-W, Xiong F, Hsu PC, Li Y, Zhao J, Chu S, Cui Y (2016) Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nat Energy 1:16010

    CAS  Google Scholar 

  33. 33.

    Reddy KR, Reddy CV, Nadagouda MN, Shetti NP, Jaesool S, Aminabhavi TM (2019) Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications[J]. J Environ Manag 238:25–40

    CAS  Google Scholar 

  34. 34.

    Chen J, Mao Z, Zhang L, Wang D, Xu R, Bie L, Fahlman BD (2017) Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes[J]. ACS Nano 11:12650–12657

    CAS  PubMed  Google Scholar 

  35. 35.

    Mishra A, Mehta A, Basu S, Shetti NP, Reddy KR, Aminabhavi TM (2019) Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: a review[J]. Carbon 149:693–721

    CAS  Google Scholar 

  36. 36.

    Guo Y, Niu P, Liu Y et al (2019) An Autotransferable g-C3N4 Li+-Modulating Layer toward Stable Lithium Anodes[J]. Adv Mater 31:e1900342

    PubMed  Google Scholar 

  37. 37.

    Hu J, Tian J, Li C (2017) Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries[J]. ACS Appl Mater Interfaces 9:11615–11625

    CAS  PubMed  Google Scholar 

  38. 38.

    Sun Z, Li Y, Zhang S, Shi L, Wu H, Bu H, Ding S (2019) g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability[J]. J Mater Chem A 7:11069–11076

    CAS  Google Scholar 

  39. 39.

    Huang Y, Chen B, Duan J, Yang F, Wang T, Wang Z, Yang W, Hu C, Luo W, Huang Y (2020) Graphitic carbon bitride (g-C3N4): an interface enabler for solid-state lithium metal batteries[J]. Angew Chem Int Ed 59:3699–3704

    CAS  Google Scholar 

  40. 40.

    Monga D, Ilager D, Shetti NP, Basu S, Aminabhavi TM (2020) 2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced visible-light-driven photocatalytic and electrochemical degradation of organic pollutants[J]. J Environ Manag 274:111208

    CAS  Google Scholar 

  41. 41.

    Tan Z, Ni K, Chen G, Zeng W, Tao Z, Ikram M, Zhang Q, Wang H, Sun L, Zhu X, Wu X, Ji H, Ruoff RS, Zhu Y (2017) Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage[J]. Adv Mater 29:1603414

    Google Scholar 

  42. 42.

    Lu Z, Liang Q, Wang B, Tao Y, Zhao Y, Lv W, Liu D, Zhang C, Weng Z, Liang J, Li H, Yang QH (2019) Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes[J]. Adv Energy Mater 9:1803186

    Google Scholar 

  43. 43.

    Chen K-H, Wood KN, Kazyak E et al (2017) Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. J Mater Chem A 5:11671–11681

    CAS  Google Scholar 

  44. 44.

    Li K, Hu Z, Ma J et al (2019) A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Adv Mater 31:e1902399

    PubMed  Google Scholar 

  45. 45.

    Wang H, Liu M, Wang X, Zhang W, Che Y, Chen L, Wu Y, Li W (2020) A self-smoothing Li-metal anode enabled via a hybrid interface film[J]. J Mater Chem A 8:12045–12054

    CAS  Google Scholar 

  46. 46.

    Zhuang Z, Yang L, Ju B, Lei G, Zhou Q, Liao H, Yin A, Deng Z, Tang Y, Qin S, Tu F (2020) Ameliorating interfacial issues of LiNi0.5Co0.2Mn0.3O2/poly(propylene carbonate) by introducing graphene interlayer for all-solid-state lithium batteries[J]. ChemistrySelect 5:2291–2299

    CAS  Google Scholar 

  47. 47.

    Zhuang Z, Yang L, Ju B et al (2020) Engineering LiNi0.5Co0.2Mn0.3O2/poly(propylene carbonate) interface by graphene oxide modification for all-solid-state lithium batteries[J]. Energy Storage 2:e109

    CAS  Google Scholar 

  48. 48.

    Zhao Q, Liu X, Stalin S, Khan K, Archer LA (2019) Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nat Energy 4:365–373

    CAS  Google Scholar 

  49. 49.

    Park K, Goodenough JB (2017) Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N[J]. Adv Energy Mater 7:1700732

    Google Scholar 

  50. 50.

    Yao YX, Zhang XQ, Li BQ et al (2019) A compact inorganic layer for robust anode protection in lithium-sulfur batteries[J]. InfoMat 2:379–388

    Google Scholar 

  51. 51.

    Peng Z, Ren F, Yang S, Wang M, Sun J, Wang D, Xu W, Zhang JG (2019) A highly stable host for lithium metal anode enabled by Li9Al4-Li3N-AlN structure[J]. Nano Energy 59:110–119

    CAS  Google Scholar 

  52. 52.

    Ye S, Wang L, Liu F et al (2020) g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode[J]. Adv Energy Mater 10:2002647

    CAS  Google Scholar 

  53. 53.

    Yang W, Yang W, Sun B, di S, Yan K, Wang G, Shao G (2018) Mixed lithium oxynitride/oxysulfide as an interphase protective layer to stabilize lithium anodes for high-performance lithium-sulfur batteries[J]. ACS Appl Mater Interfaces 10:39695–39704

    CAS  PubMed  Google Scholar 

Download references


The authors would like to thank the Natural Science Foundation of Hunan Province (2020JJ5563), Science and Technology Innovation Project of China Minmetals (2018ZXB02-01), and Science and Technology Innovation Project of CRIMM (20192709). We would also thank Yecheng Fan from Shiyanjia Lab (www.shiyanjia.com) for the TEM, AFM and XPS analysis.

Author information



Corresponding authors

Correspondence to Bowei Ju or Feiyue Tu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Z., Ju, B., Ma, P. et al. Ultrathin graphitic C3N4 lithiophilic nanosheets regulating Li+ flux for lithium metal batteries. Ionics 27, 1069–1079 (2021). https://doi.org/10.1007/s11581-020-03897-8

Download citation


  • g-C3N4
  • Nanosheet
  • Lithiophilic
  • Artificial SEI
  • Lithium metal batteries