Structural stabilization of δ-phase Bi2O3 in the MgBi1.5RE0.5O4 system through rare earth substitution for improved ionic conductivity

Abstract

Fluorite-structured Bi2O3 oxide materials are promising candidates for oxygen ion conductors. In this regard, we attempted to stabilise the δ-phase through rare earth ion substitution in a new series of compositions: MgBi1.5RE0.5O4 (RE = Nd, Sm, Gd, Dy, Y). They exhibit a phase transformation from a rhombohedral (Nd-Gd) to a fluorite-type (Dy, Y) structure as the ionic radius of rare earth decreases. The electrical property studies show that conductivity is a function of crystalline structure and lattice volume. Maximum conductivity of 4.3 × 10−2 S/cm is obtained for the Y composition at 1023 K. The conductivity of the rhombohedral composition decreases as the lattice volume decreases associated with the increased activation energy. Contrastingly, the conductivity decreases with the increase of the lattice volume from Y to Dy on account of δ-phase instability at higher temperature. These results demonstrate that structural stabilization of δ-phase Bi2O3 can be achieved through Y substitution with more thermal stability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Boivin J (2001) Structural and electrochemical features of fast oxide ion conductors. Int J Inorg Mater 3:1261–1266

    CAS  Article  Google Scholar 

  2. 2.

    Sammells AF, Cook RL, White JH et al (1992) Rational selection of advanced solid electrolytes for intermediate temperature fuel cells. Solid State Ionics 52:111–123

    CAS  Article  Google Scholar 

  3. 3.

    Hayashi H, Inaba H, Matsuyama M et al (1999) Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 122:1–15

    CAS  Article  Google Scholar 

  4. 4.

    Navrotsky A (2010) Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure. J Mater Chem 20:10577–10587

    CAS  Article  Google Scholar 

  5. 5.

    Malavasi L, Fisher CAJ, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 39:4370–4387

    CAS  Article  Google Scholar 

  6. 6.

    Scott HG (1975) Phase relationships in the zirconia-yttria system. J Mater Sci 10:1527–1528

    CAS  Article  Google Scholar 

  7. 7.

    Yilmaz S, Turkoglu O, Ari M, Belenli I (2011) Electrical conductivity of the ionic conductor tetragonal (Bi2O3)1-x(Eu2O3)x. Ceramica 57:185–192

    CAS  Article  Google Scholar 

  8. 8.

    Fung KZ, Virkar AV (1991) Phase stability, phase transformation kinetics, and conductivity of Y2O3-Bi2O3 solid electrolytes containing aliovalent dopants. J Am Ceram Soc 74:1970–1980

    CAS  Article  Google Scholar 

  9. 9.

    Sammes NM, Tompsett GA, Näfe H, Aldinger F (1999) Bismuth based oxide electrolytes-structure and ionic conductivity. J Eur Ceram Soc 19:1801–1826

    CAS  Article  Google Scholar 

  10. 10.

    Watanabe A, Kikuchi T (1986) Solid State Ionics 21 (1986) 287-291 North-Holland, Amsterdam Cubic hexagonal transformation of Yttria stabilised i-Bismuth Sesquiquioxide. Solid State Ionics 21:287–291

    CAS  Article  Google Scholar 

  11. 11.

    Takahashi T, Esaka T, Iwahara H (1975) High oxide ion conduction in the sintered oxides of the system Bi2O3-Gd2O3. J Appl Electrochem 5:197–202

    CAS  Article  Google Scholar 

  12. 12.

    Steele BCH (1996) Ceramic ion conducting membranes. Curr Opin Solid State Mater Sci 1:684–691

    CAS  Article  Google Scholar 

  13. 13.

    Jiang N, Buchanan RM, Stevenson DA, Nix WD, Li JZ, Yang JL (1995) Anion ordering in aged stabilized bismuth oxide. Mater Lett 22:215–219

    CAS  Article  Google Scholar 

  14. 14.

    Orlova EI, Kharitonova EP, Gorshkov NV, Goffman VG, Voronkova VI (2017) Phase formation and electrical properties of Bi2O3-based compounds in the Bi2O3-La2O3-MoO3 system. Solid State Ionics 302:158–164

    CAS  Article  Google Scholar 

  15. 15.

    Kharitonova EP, Orlova EI, Gorshkov NV, Goffman VG, Chernyak SA, Voronkova VI (2019) Polymorphism and conductivity of Bi2O3-based fluorite-like compounds in Bi2O3–Nd2O3–MoO3 system. J Alloys Compd 787:452–462

    CAS  Article  Google Scholar 

  16. 16.

    Kharitonova EP, Orlova EI, Gorshkov NV, Goffman VG, Voronkova VI (2018) Stabilized Bi2O3-based phases in the Bi2O3–Pr2O3–MoO3 system and their electrical properties. Ceram Int 44:12886–12895

    CAS  Article  Google Scholar 

  17. 17.

    Meng G, Chen C, Han X et al (1988) Conductivity of Bi2O3-based oxide ion conductors with double stabilizers. Solid State Ionics 28:0–5

    Google Scholar 

  18. 18.

    Polat Y, Akalan H, Arı M (2017) Thermo-electrical and structural properties of Gd2O3 and Lu2O3 double-doped Bi2O3. Int J Hydrog Energy 42:614–622

    CAS  Article  Google Scholar 

  19. 19.

    Jung DW, Lee KT, Wachsman ED (2016) Dysprosium and gadolinium double doped bismuth oxide electrolytes for low temperature solid oxide fuel cells. J Electrochem Soc 163:411–415

    Article  Google Scholar 

  20. 20.

    Webster Nathan (2007) New fluorite-type Bi2O3 -based solid electrolytes: characterisation, conductivity and crystallography

  21. 21.

    Jiang N, Wachsman ED (1999) Structural stability and conductivity of phase-stabilized cubic bismuth oxides. J Am Ceram Soc 82:3057–3064

    CAS  Article  Google Scholar 

  22. 22.

    Boivin JC, Thomas D (1981) Structural investigation on bismuth based mixed oxides. Solid State Ionics 4:457–462

    Article  Google Scholar 

  23. 23.

    Abbona F, Aquilano D (2010) Springer handbook of crystal growth

  24. 24.

    Suzuki Y, Yoshikawa S (2004) Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J Mater Res 19:982–985

    CAS  Article  Google Scholar 

  25. 25.

    Chou T, Der Liu L, Wei WCJ (2011) Phase stability and electric conductivity of Er2O3-Nb2O5 co-doped Bi2O3 electrolyte. J Eur Ceram Soc 31:3087–3094

    CAS  Article  Google Scholar 

  26. 26.

    Lai W (2007) Impedance spectroscopy as a tool for the electrochemical study of mixed conducting ceria

  27. 27.

    Sibi KS, Radhakrishnan AN, Deepa M et al (2009) Oxide ion conductivity and relaxation in CaREZrNbO7 (RE = La, Nd, Sm, Gd, and Y) system. Solid State Ionics 180:1164–1172

    CAS  Article  Google Scholar 

  28. 28.

    Takai S, Kohno N, Esaka T (1998) Conductivity relaxation study on (Bi2O3)1-x Y2O3x and (Bi2O3)1-x Gd2O3x with the defect fluorite structure. Mater Res Bull 33:945–953

    CAS  Article  Google Scholar 

  29. 29.

    Verkerk MJ, van de Velde GMH, Burggraaf AJ, Helmholdt RB (1982) Structure and ionic conductivity of Bi2O3 substituted with lanthanide oxides. J Phys Chem Solids 43:1129–1136

    CAS  Article  Google Scholar 

  30. 30.

    Wakamura K (2009) Ion conduction in proton- and related defect ( super ) ionic conductors: mechanical, electronic and structure parameters. Solid State Ionics 180:1343–1349

    CAS  Article  Google Scholar 

  31. 31.

    Wachsman ED (2004) Effect of oxygen sublattice order on conductivity in highly defective fluorite oxides. J Eur Ceram Soc 24:1281–1285

    CAS  Article  Google Scholar 

  32. 32.

    Omari M, Drache M, Conflant P, Boivin JC (1990) Anionic conduction properties of the fluorite-type phase in the Bi2O3-Y2O3-PbO system. Solid State Ionics 40–41:929–933

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Renju U. A., would like to acknowledge the Kerala State Council for Science Technology and Environment (KSCSTE) for the financial support towards a research fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Prabhakar Rao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1484 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Renju, U.A., Rao, P.P. Structural stabilization of δ-phase Bi2O3 in the MgBi1.5RE0.5O4 system through rare earth substitution for improved ionic conductivity. Ionics (2020). https://doi.org/10.1007/s11581-020-03662-x

Download citation

Keywords

  • δ-Phase Bi2O3
  • Fluorite
  • Conductivity
  • Rare earth