Enhanced electrochemical performance of LiAlO2-LiMnPO4/C composite using LiAlO2 from AAO synthesis by hydrothermal rout


Lithium aluminate (LiAlO2) has been successfully synthesized by a hydrothermal reaction based on using the anodic alumina (AAO) as the template and explored as the compound materials in LiMnPO4/C lithium battery. LiAlO2 nanoplate porous structure is inherited from anodic aluminum oxide (AAO) structure and serves as substrates to grow LiMnPO4 nanocrystals, which provide a high surface area with a porous structure. The morphology, structure, and electrochemical properties of the samples were analyzed. The instruments used in this process are X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM), and charge-discharge test system. The crystallization transition process of the precursor after hydrothermal reaction was researched by thermal gravity analysis. The specific surface area and pore volume of LiAlO2 are 118.6 m2/g and 0.89 cm3/g, which were confirmed by the method of nitrogen adsorption. Moreover, the 10% content LiAlO2-LiMnPO4/C has the excellent electrochemical performance, and its first discharge capacity is 144 mAh/g at 0.1 C, compared with the LiMnPO4/C electrode (121 mAh/g at 0.1 C). The LiAlO2 can obstruct the direct contact of electrode and electrolyte, thus reducing their direct contact areas of cathode at charged state, owing to the fact that LiAlO2 around the active surfaces of LiMnPO4 grains acts as an ionic conductive wiring.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Delacourt C, Poizot P, Morcrette M (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16(1):93–99

    Google Scholar 

  2. 2.

    Martha SK, Markovsky B, Grinblat J (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156(7):A541–A552

    Google Scholar 

  3. 3.

    Luo SH, Tang ZL, Lu JB, Zhang ZT (2008) Electrochemical properties of carbon-mixed LiFePO4 cathode material synthesized by the ceramic granulation method. Ceram Int 34(5):1349–1351

    Google Scholar 

  4. 4.

    Zhong SK, Wu L, Liu J (2012) Sol-gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries. Electrochim Acta 74:8–15

    Google Scholar 

  5. 5.

    Bakenov Z, Taniguchi I (2010) Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries. Electrochem Commun 12(1):75–78

    Google Scholar 

  6. 6.

    Delacourt C, Laffont L, Bouchet R (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4(M=Fe, Mn) electrode materials. J Electrochem Soc 152(5):A913–A921

    Google Scholar 

  7. 7.

    Sun YK, Oh SM, Park HK, Scrosati B (2011) Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable Lithium-ion batteries. Adv Mater 23(43):5050–5054

    PubMed  Google Scholar 

  8. 8.

    Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R (2004) Comparative kinetic study of olivine LixMPO4(M=Fe, Mn). J Electrochem Soc 151(9):A1352–A1356

    Google Scholar 

  9. 9.

    Bezza I, Kaus M, Heinzmann R (2015) Mechanism of the delithiation/lithiation process in LiFe0.4Mn0.6PO4: in situ and ex situ investigations on long-range and local structures. J Phys Chem C 119:9016–9024

    Google Scholar 

  10. 10.

    Li JZ, Luo SH, Wang Q, Yan SX, Feng J, Ding XY, He P, Zong LB (2019) Facile fabrication of hierarchical LiMnPO4 microspheres for high-performance lithium-ion batteries cathode. J Electrochem Soc 166(2):A118–A124

    Google Scholar 

  11. 11.

    Li JZ, Luo SH, Wang Q, Yan SX, Feng J, Liu H, Ding XY, He P (2018) Facile synthesis of carbon-LiMnPO4 nanorods with hierarchical architecture as a cathode for high-performance Li-ion batteries. Electrochim Acta 289:415–421

    Google Scholar 

  12. 12.

    Prosini PP, Carewska M, Scaccia S (2003) Long-term cycle ability of nanostructured LiFePO4. Electrochim Acta 48(28):4205–4211

    Google Scholar 

  13. 13.

    Wang D, Buqa H, Crouzet M (2009) High-performance, nanostructured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628

    Google Scholar 

  14. 14.

    Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224–A229

    Google Scholar 

  15. 15.

    Myung ST, Komaba S, Hirosaki N (2004) Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim Acta 49(24):4213–4222

    Google Scholar 

  16. 16.

    Damen L, Giorgio FD, Monaco S (2012) Synthesis and characterization of carbon-coated LiMnPO4 and LiMn1-xFexPO4(x=0.2, x=0.3)materials for lithium-ion batteries. J Powder Sources 218:250–253

    Google Scholar 

  17. 17.

    Mi CH, Zhao XB, Cao GS, Tu JP (2005) In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes. J Electrochem Soc 152(3):A483–A487

    Google Scholar 

  18. 18.

    Zhang J, Luo SH, Chang LJ, Hao AM, Wang ZY, Liu YG, Xu Q, Wang Q, Zhang YH (2017) Co-hydrothermal synthesis of LiMn23/24Mg1/24PO4·LiAlO2/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries. Appl Surf Sci 394:190–196

    Google Scholar 

  19. 19.

    Zhang J, Luo SH, Wang Q, Wang ZY, Zhang YH, Hao AM, Liu YG, Xu Q, Zhai YC (2017) Yttrium substituting in Mn site to improve electrochemical kinetics activity of sol-gel synthesized LiMnPO4/C as cathode for lithium ion battery. Solid State Electrochem 21:3189–3194

    Google Scholar 

  20. 20.

    Nishikawa M, Baba A, Kawamura Y (1997) Tritium inventory in a LiAlO2 blanket J. Nucl Mater 246:1–8

    Google Scholar 

  21. 21.

    Suski L, Tarniowy M (2001) The phase stability of solid LiAlO2 used for the electrolyte matrix of molten carbonate fuel cells. J Mater Sci 36:5119–5124

    Google Scholar 

  22. 22.

    Lei L, He DW, Zou YT, Zhang W, Wang Z, Jiang M (2008) Phase transitions of LiAlO2 at high pressure and high temperature. J Solid State Chem 181(8):1810–1815

    Google Scholar 

  23. 23.

    Ribeiro RA, Silva GG, Mohallem NDS (2001) The influences of heat treatment on the structural properties of lithium aluminates. J Phys Chem Solids 62:857–891

    Google Scholar 

  24. 24.

    Dronskowski R (1993) Reactivity and acidity of Li in lithium aluminum oxide (LiAlO2) phases. Inorg Chem 32(1):1–9

    Google Scholar 

  25. 25.

    Hirano S, Hayashi T, kageyama T (1987) Synthesis of LiAlO2 powder by hydrolysis of metal alkoxides. J Am Ceram Soc 709: 171–174

  26. 26.

    Kim JY, Kim SH, Kim KS, Lockley M (2006) Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles. J Power Sources 161:623–627

    Google Scholar 

  27. 27.

    Cheng FQ, Xin YI, Huang YY, Chen JT, Zhou HH, Zhang XX (2013) Enhanced electrochemical performances of 5V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2. J Power Sources 239:181–188

    Google Scholar 

  28. 28.

    Luo SH, Tian Y, Li H, Sun Y, Wang M, Gen LL (2011) Synthesis and properties of LiFePO4/LiAlO2 nano mesoporous composite cathode materials. Rare Metal Mater Eng 40:275–278

    Google Scholar 

  29. 29.

    Kwon SW, Park SB (2000) Effect of precursors on the morphology of lithium aluminate prepared by hydrothermal treatment. J Mater Sci 35:1973–1978

    Google Scholar 

  30. 30.

    Sokolov S, Stein A (2003) Preparation and characterization of macroporous γ-LiAlO2. Mater Lett 57(22–23):3593–3597

    Google Scholar 

  31. 31.

    Wang WZ, Huang JY, Wang DZ (2005) Low-temperatura hydrothermal synthesis of multiwall carbon nanotubes. Carbon 43:1328–1331

    Google Scholar 

  32. 32.

    Kang YC, Park SB, Kwon SW (1996) Preparation of submicron size gamma lithium aluminate particles from the mixture of alumina sol and lithium salt by ultrasonic spray pyrolysis. J Colloid Interface Sci 182(1):59–62

    Google Scholar 

  33. 33.

    Bonsaglia ECR, Silva NCC, Fernades Júnior A, Araújo Júnior JP, Tsunemi MH, Rall VLM (2014) Production of biofilm by Listeria monocytogenes in different materials and temperatures. Food Control 35(1):386–391

    Google Scholar 

  34. 34.

    Li Y, Jing Z, Li YD (2002) Formation of rod-like Mg (OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Mater Chem Phys 76(2):119–122

    Google Scholar 

  35. 35.

    Han AF, Li XL, Huang BX, Tsoi JKH, Matinlinna JP, Chen ZF, Deng DM (2006) The effect of titanium implant surface modification on the dynamic process of initial microbial adhesion and biofilm formation. Int J Adhes Adhes 69:125–132

    Google Scholar 

  36. 36.

    Li JZ, Luo SH, Ding XY, Wang Q, He P (2017) Hydrothermal synthesis of LiAlO2 nanostructures with high specific surface area by using anodized aluminum oxide template. Mater Lett 196(1):183–186

    Google Scholar 

  37. 37.

    Tang ZL, Hu LF, Zhang ZT, Li JR, Luo SH (2007) Hydrothermal synthesis of high surface area mesoporous lithium aluminate. Mater Lett 61(2):570–573

    Google Scholar 

  38. 38.

    Ju DX, Xu HG, Zhang J, Guo J, Cao BQ (2014) Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing. Sensors Actuators B Chem 201(1):444–451

    Google Scholar 

  39. 39.

    Okada K, Machida N, Naito M (2014) Preparation and electrochemical properties of LiAlO2-coated Li (Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries. Solid State Ionics 255:120–127

    Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (No. 51674068, 51704064, 51874079, 51804035), Natural Science Foundation of Liaoning Province (No. 2019-ZD-0507), Natural Science Foundation of Hebei Province (No. E2018501091), the Training Foundation for Scientific Research of Talents Project, Hebei Province (No.A2016005004), Hebei Province Higher Education Science and Technology Research Project (No.QN2017403), the Fundamental Research Funds for the Central Universities (No. N172302001, N182312007, N182304015) and Qinhuangdao City University Student of Science and Technology Innovation and Entrepreneurship Project (No.PZB1810008T-46, PZB1810008T-14).

Author information



Corresponding authors

Correspondence to Longjiao Chang or Shaohua Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Luo, S., Li, S. et al. Enhanced electrochemical performance of LiAlO2-LiMnPO4/C composite using LiAlO2 from AAO synthesis by hydrothermal rout. Ionics (2020). https://doi.org/10.1007/s11581-020-03654-x

Download citation


  • Lithium-ion batteries
  • Cathode material
  • LiMnPO4
  • Lithium aluminate composite
  • Electrochemical performance