A three-dimensional Co5-cluster-based MOF as a high-performance electrode material for supercapacitor


Searching for new metal–organic frameworks with excellent electrochemical performances is considerably important to advance their application in supercapacitors. Herein, a Co5-cluster-based three-dimensional (3D) metal–organic framework (Co5(OH)2(O2CCH3)8·2H2O, Co5-MOF) was synthesized and characterized by X-ray powder diffraction, infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, and nitrogen adsorption–desorption. The Co5-MOF as an electrode material of supercapacitors was investigated for the first time. In a three-electrode system, the highest specific capacitance for the Co5-MOF electrode is 867 F g−1 at 1 A g−1, and the specific capacitance still remains 90.3% of the original specific capacitance after 3000 cycles, displaying its good long-term cycle stability. The asymmetric supercapacitor based on the Co5-MOF as the positive electrode and the rGO as the negative electrode presented a high energy density of 18 W h kg−1 at a power density of 0.7 kW kg−1. The high supercapacitive properties may be attributed to the nano-sized Co5-MOF particles with larger specific surface area and pore structure.

Co5-cluster-based MOF was synthesized by the solvothermal reaction, which displays excellent cyclic stability, better rate capability, and higher specific capacity as an electrode material for supercapacitors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114(23):11414–11443

    CAS  PubMed  Google Scholar 

  2. 2.

    Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 7(1):14–18

    CAS  Google Scholar 

  3. 3.

    Liang Z, Qu C, Guo W, Zou R, Xu Q (2018) Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv Mater 30(37):1702891

    Google Scholar 

  4. 4.

    Zhao J, Jiang YF, Fan H, Liu M, Zhuo O, Wang XZ, Wu Q, Yang LJ, Ma YW, Hu Z (2017) Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure–performance relationship. Adv Mater:1604569

  5. 5.

    Wei QL, Xiong FY, Tan SS, Huang L, Lan Esther H, Dunn B, Mai LQ (2017) Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv Mater 1602300

  6. 6.

    Zhang P, Guan BY, Yu L, Lou XW (2017) Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew Chem Int Ed 56(25):7141–7145

    CAS  Google Scholar 

  7. 7.

    Simon P, Gogotsi Y (2009) Materials for electrochemical capacitors. Nat Mater:320–329

  8. 8.

    Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antonietti M (2007) High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv Funct Mater 17(16):3083–3087

    CAS  Google Scholar 

  9. 9.

    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    CAS  Google Scholar 

  10. 10.

    Yi M, Zhang C, Cao C, Xu C, Sa B, Cai D, Zhan H (2019) MOF-derived hybrid hollow submicrospheres of nitrogen-doped carbon-encapsulated bimetallic Ni-Co-S nanoparticles for supercapacitors and lithium ion batteries. Inorg Chem 58(6):3916–3924

    CAS  PubMed  Google Scholar 

  11. 11.

    Zhang C, Yin H, Han M, Dai Z, Pang H, Zheng Y (2014) Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS nano 8(4):3761–3770

    CAS  PubMed  Google Scholar 

  12. 12.

    Liu C, Zhao S, Lu Y, Chang Y, Xu D, Wang Q (2017) 3D porous nanoarchitectures derived from SnS/S-doped graphene hybrid nanosheets for flexible all-solid-state supercapacitors. Small 13(12)

  13. 13.

    Gong J, Li JC, Yang J, Zhao S, Yang Z, Zhang K (2018) High-performance flexible in-plane micro-supercapacitors based on vertically aligned CuSe@Ni(OH)2 hybrid nanosheet films. ACS applied materials & interfaces 10(44):38341–38349

    CAS  Google Scholar 

  14. 14.

    Xi C, Zhu G, Liu Y, Shen X, Zhu W, Ji Z (2018) Belt-like nickel hydroxide carbonate/reduced graphene oxide hybrids: synthesis and performance as supercapacitor electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 538:748–756

    CAS  Google Scholar 

  15. 15.

    Saraf M, Natarajan K, Mobin SM (2018) Emerging robust heterostructure of MoS2-rGO for high-performance supercapacitors. ACS Appl Mater Interfaces 10(19):16588–16595

    CAS  PubMed  Google Scholar 

  16. 16.

    Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028

    CAS  PubMed  Google Scholar 

  17. 17.

    Wen P, Gong P, Sun J, Wang J, Yang S (2015) Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J Mater Chem A 3(26):13874–13883

    CAS  Google Scholar 

  18. 18.

    Forse AC, Merlet C, Griffin JM, Grey CP (2016) New perspectives on the charging mechanisms of supercapacitors. J Am Chem Soc 138(18):5731–5744

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444

    Google Scholar 

  20. 20.

    Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933–969

    CAS  Google Scholar 

  21. 21.

    Su J, Hu TH, Murase R, Wang HY, D’Alessandro DM, Kurmoo M, Zuo JL (2019) Redox activities of metal−organic frameworks incorporating rare-earth metal chains and tetrathiafulvalene linkers. Inorg Chem 58:3698–3706

    CAS  PubMed  Google Scholar 

  22. 22.

    Liu Q, Yu L, Wang Y, Ji Y, Horvat J, Cheng ML, Jia X, Wang G (2013) Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. Inorg Chem 52:2817–2822

    CAS  PubMed  Google Scholar 

  23. 23.

    Song YD, Yu LL, Gao YR, Shi CD, Cheng ML, Wang XM, Liu HJ, Liu Q (2017) One-dimensional zinc-based coordination polymer as a higher capacity anode material for lithium ion batteries. Inorg Chem 56(17):11603–11609

    CAS  PubMed  Google Scholar 

  24. 24.

    Sun GC, Yu LL, Hu Y, Sha YY, Rong HR, Li BL, Liu HJ, Liu Q (2019) A manganese-based coordination polymer containing no solvent as a high performance anode in Li-ion batteries. Cryst Growth Des 19:6503–6510

    CAS  Google Scholar 

  25. 25.

    Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137(15):4920–4923

    CAS  PubMed  Google Scholar 

  26. 26.

    Choi KM, Jeong HM, Park JH, Zhang YB, Kang JK, Yaghi OM (2014) Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8(7):7451–7457

    CAS  PubMed  Google Scholar 

  27. 27.

    Yang J, Ma Z, Gao W, Wei M (2017) Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode. Chem Eur J 23(3):631–636

    CAS  PubMed  Google Scholar 

  28. 28.

    Kazemi SH, Hosseinzadeh B, Kazemi H, Kiani MA, Hajati S (2018) Facile synthesis of mixed metal-organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. ACS Appl Mater Interfaces 10(27):23063–23073

    CAS  PubMed  Google Scholar 

  29. 29.

    Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications. Energy Environ Sci 5(11):9269

    CAS  Google Scholar 

  30. 30.

    Zheng SS, Xue HG, Pang H (2018) Supercapacitors based on metal coordination materials. Coordin Chem Rev 373:2–21

    CAS  Google Scholar 

  31. 31.

    Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016) Metal–organic frameworks for energy storage: batteries and supercapacitors. Coordin Chem Rev 307:361–381

    CAS  Google Scholar 

  32. 32.

    Li SL, Xu Q (2013) Metal–organic frameworks as platforms for clean energy. Energy Environ Sci 6(6):1656

    CAS  Google Scholar 

  33. 33.

    Lee DY, Yoon SJ, Shrestha NK, Lee SH, Ahn H, Han SH (2012) Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Micropor Mesopor Mat 153:163–165

    CAS  Google Scholar 

  34. 34.

    Yang J, Zheng C, Xiong P, Li Y, Wei M (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2(44):19005–19010

    CAS  Google Scholar 

  35. 35.

    Kang L, Sun SX, Kong LB, Lang JW, Luo YC (2014) Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chinese Chem Lett 25(6):957–961

    CAS  Google Scholar 

  36. 36.

    Yan Y, Gu P, Zheng S, Zheng M, Pang H, Xue H (2016) Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A 4(48):19078–19085

    CAS  Google Scholar 

  37. 37.

    Du M, Chen M, Yang XG, Wen J, Wang X, Fang SM, Liu CS (2014) A channel-type mesoporous In(III)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors. J Mater Chem A 2(25):9828–9834

    CAS  Google Scholar 

  38. 38.

    Díaz R, Orcajo MG, Botas JA, Calleja G, Palma J (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128

    Google Scholar 

  39. 39.

    Liu X, Shi C, Zhai C, Cheng M, Liu Q, Wang G (2016) Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl Mater Interfaces 8(7):4585–4591

    CAS  PubMed  Google Scholar 

  40. 40.

    Yang J, Xiong P, Zheng C, Qiu H, Wei M (2014) Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J Mater Chem A 2(39):16640–16644

    CAS  Google Scholar 

  41. 41.

    Sheberla D, Bachman JC, Elias JS, Sun CJ, Y SH (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16(2):220–224

    CAS  PubMed  Google Scholar 

  42. 42.

    Yu L, Wang X, Cheng M, Rong H, Song Y, Liu Q (2017) A three-dimensional copper coordination polymer constructed by 3-methyl-1H-pyrazole-4-carboxylic acid with higher capacitance for supercapacitors. Cryst Growth Des 18(1):280–285

    Google Scholar 

  43. 43.

    Song H, Shen L, Wang C (2014) Template-free method towards quadrate Co3O4 nanoboxes from cobalt coordination polymer nano-solids for high performance lithium ion battery anodes. J Mater Chem A 2(48):20597–20604

    CAS  Google Scholar 

  44. 44.

    Kuhlman R, Schimek GL, Kolis JW (1999) An extended solid from the solvothermal decomposition of Co(Acac)3: structure and characterization of Co5(OH)2(O2CCH3)8·2H2O. Inorg Chem 38(1):194–196

    CAS  Google Scholar 

  45. 45.

    Liu S, Wang D, Pan S (1998) Analysis of X-ray photoelectron spectroscopy. Science Press Beijing, Beijing

  46. 46.

    Wang X, Liu X, Rong H, Song Y, Wen H, Liu Q (2017) Layered manganese-based metal–organic framework as a high capacity electrode material for supercapacitors. RSC Adv 7(47):29611–29617

    CAS  Google Scholar 

  47. 47.

    Wang L, Dong ZH, Wang ZG, Zhang FX, Jin J (2013) Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity. Adv Funct Mater 23(21):2758–2764

    CAS  Google Scholar 

  48. 48.

    Liu Q, Liu X, Shi C, Zhang Y, Feng X, Cheng ML, Su S, Gu J (2015) A copper-based layered coordination polymer: synthesis, magnetic properties and electrochemical performance in supercapacitors. Dalton Trans 44(44):19175–19184

    CAS  PubMed  Google Scholar 

  49. 49.

    Li S, Cheng P, Luo J, Zhou D, Xu WM, Li JW, Li RC, Yuan DS (2017) High-performance flexible asymmetric supercapacitor based on CoAl-LDH and rGO electrodes. Nano Micro Lett 9(3):31–42

    Google Scholar 

  50. 50.

    Gao S, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2018) Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. J Colloid Interface Sci 531:83–90

    CAS  PubMed  Google Scholar 

  51. 51.

    Xue YY, Shu NL, Yu CJ, Man CH, Quan GZ (2019) Quest for 9-connected robust metal-organic framework platforms on the base of [M3(O/OH)(COO)6(pyridine)3] cluster as excellent gas separation and asymmetric supercapacitor materials. J Mater Chem A 7:4640–4650

    CAS  Google Scholar 

  52. 52.

    Abazari R, Sanati S, Morsali A, Slawin AMZ, Carpenter-Warren CL, Chen W, Zheng A (2019) Ultrafast post-synthetic modification of a pillared cobalt(II)-based metal–organic framework via sulfurization of its pores for high-performance supercapacitors. J Mater Chem A 7(19):11953–11966

    CAS  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of China (No. 21975034), the Natural Science Research Key Project of Jiangsu Colleges and Universities (No. 16KJA430005), and the Research Project of Jiangsu Province Key Laboratory of Fine Petrochemical Engineering.

Author information



Corresponding authors

Correspondence to Hongren Rong or Qi Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 1951 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Wang, X., Ma, Y. et al. A three-dimensional Co5-cluster-based MOF as a high-performance electrode material for supercapacitor. Ionics (2020). https://doi.org/10.1007/s11581-020-03649-8

Download citation


  • Cobalt compound
  • MOFs
  • Electrode materials
  • Supercapacitors